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Learning Objectives

In this chapter the reader will learn about Moments and products of Inertia, theorems of parallel and

perpendicular axes, principal axes and momental ellipsoid.

1.1

Introduction

]
DDE, GJUS&T, Hisar 3|



Mechanics MAL-513

Inertia of a body is the inability of the body to change by itself its state of rest or state of uniform
motion along a straight line. Inertia of motion is the inability of a body to change by itself its state of
motion. An external force is always required to change the state of rest or state of uniform linear motion
of the body. This force varies directly as the mass of the body. Hence mass of a body is a measure of
inertia of the body in linear motion. Similarly, a body at rest cannot start rotating about an axis on its
own; and a body rotating about a given axis cannot stop on its own, i.e. there is inertia of rotational
motion as well. A quantity that measures the inertia of rotational motion of the body is called rotational
inertia or moment of inertia of the body. Thus rotational inertia plays the same role in roational motion
as mass plays in linear motion, i.e. moment of inertia is rotational analogue of mass in linear motion. We
shall denote moment of inertia of a body by I.

Let there are n particles of masses m;, then moment of inertia of the system is

@)

L
n
I'=my dZ +m,d3 +..+m,d2 = > md?
i1
| =% md?

where d; are the L distances of particles from the axis.

1.2 Some Basic Definitions

(i) Moment of inertia

]
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Moment of inertia of a body about a given axis is defined as the sum of the products of masses of all the
particles of the body and squares of their respective perpendicular distances from the axis of rotation.

Thus we have
n
i=1

(if) Radius of gyration
Radius of gyration of a body about a given axis is the L distance of a point P from the axis, where if
whole mass of the body were concentrated, the body shall have the same moment of inertia as it has with

the actual distribution of mass. This distance is represented by K.

When K is radius of gyration, then we have
I'=1
= MK*=m(f+r7 +..4+1%)

mn(tZ +12 +...+1?)
n

- MK?® =

M2+ AT
n

= MK?

K= \/r12+r22+...+r§
n

]
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where n is the number of particles of the body, each of mass ‘m” and ry, I,,..., r, be the perpendicular
distances of these particles from axis of rotation.

Where M = m x n = total mass of body.

Hence radius of gyration of a body about a given axis is equal to root mean square distance of the

constituent particles of the body from the given axis.

1.3 Moment of Inertia in one, two and three dimensions

(i) M.L. in three dimensions

Let us consider a three dimensional body of volume V. Let OL be axis of rotation. Consider an
infinitesimal small element of mass dn,, then

mass of small element d, = p dV,

O
where dV = volume of infinitesimal small element and d p is the density of
material. Then moment of inertia of body is d
m
1= [[[d,d?
\%
2 L
or |I= .[H pd® dV
\%
(i) M.L. in two dimensions 0
Here mass of small element is dy, = p dS d -
and moment of inertia is I :J.J.dmd2 dny
S
or | = ||pd®dS
j L

where dS = surface area of small element
(i) M.IL. in one dimension
Consider a body (a line or curve) in one dimension. Consider a

small element of length ds and mass dm,. Then massoof small

element is
dn=pds

M.1. of small element = d, d°
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(. ]
. M.L. of body = J.dmdz
or | = jpdzds
S

1.4 Examples based on Moment of inertia

Example 1: - ML.I. of a uniform rod of length ‘2a’ about an axis passing through one end and

perpendicular to the rod

0
2a
N
A ox B
PR
L

Let M = mass of rod of length 2a.

OL = axis of rotation passing through one end A and | to rod.

Mass per unit length of rod = 2—|\2

Consider a small element of breadth 6x at a distance ‘x’ from end A.

Mass of this small element = Z—I\géx

M.1. of small element about axis OL or AL = Z_I\Q X% 8x

M.1. of rod about OL = _[—xz dx
02a

M X3 2a
= —| =
Za{s}

0

]
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Example 2:- M.I. of a rod about an axis passing through mid-point and perpendicular to rod

L

2a

A OX B
X
<>

L!
Here LL’ is the axis of rotation passing through mid-point ‘O’ of rod having length 2a. Consider a small

element of breadth &x at a distance ‘x’ from mid-point of rod O.

‘. Mass of this small element = ZMSX

M.1. of small element about LL' = ZM X% 8x
a

a
M.1. of rod about LL’ = ijzdx
2a °,

a 372
0

2a0 al 3

MM
3a 3

1
= ||_|_' = §Ma2
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Example 3: - M.I. of a rectangular lamina about an axis (line) passing through centre and parallel

to one side

P

D Q C
o
8

N G N L
X
A X B

Let ABCD be a rectangular lamina of mass ‘M’ and NL be the line about which M.L. is to be calculated.
Let AB =23, BC=2b

Then area of the rectangular lamina ABCD is = 4ab

Mass per unit area of lamina = M
4ab

Consider an elementary strip PQ of length (BC = 2b) and breadth 6x and at a distance ‘x’ from G and
parallel to AD.

Mass of elementary strip = . 2b dx

M

4ab

= M OX
2a

2
M.1. of this strip about NL = b?(Mass of strip)

M.I. of rectangular lamina about NL

2 a
:Mb_J‘SX
2a 3 -,

]
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Example 4: - M.1. of rectangular lamina about a line perpendicular to lamina and passing through

centre

< >

Let GL = axis of rotation passing through centre ‘G’ and L to lamina ABCD. Consider a small element

of surface area 8S = dx dy
Here L distance of small element from axis GL is d = /X2 +y?

.. Mass of small element = p ox dy
M.1. of this small element about GL
= p dx By (X +y?)

b a
. M.1. of lamina = _[ _[p(x2+y2) dx dy

-b -a

- ap[J o+ v dcay
00

b %3 a b a3l
4p_|'(?+xy2} dy:4p_|.(§+ay2 dy
0 0

0
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R
3 3
1= % (@ +b%  [using mass of lamina M = 4p ab]

1.5 Moments and products of inertia about co-ordinate axes

(1) For a particle system

Qp?
TP(X,Y,Z)
0(0,00) |
0000 : .,
\\o:P’(x,y,O)

Consider a single particle P of mass ‘m’ having co-ordinates (X, Y, z).

Here d = L distance of particle P of mass m from z-axis

Then d=PQ=0P' = /x?+y?
Therefore, M.1. of particle of mass ‘m” about z-axis is
=md?=m (x* + y?)
.. M.1. of system of particles about z-axis is
loz = =md? = Em(x? + y?)
And Standard notation for M.1 about z-axis is C, i.e., C = =m (x* + V%) = lo,
Similarly, we can obtain M. I. about x and y-axis which are denoted as under:
About x-axis, A = Im (y? + z%) = lox

About y-axis, B = Zm (2 + x%) = loy

Product of Inertia

The quantities
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D=Xmyz
E=Xmzx and
F =% mxy

are called products of inertia w.r.t. pair of axes (Oy, Oz), (Oz, Ox) and (Ox, Oy) respectively.

(1 For a continuous body

The M.I. about z-axis, x-axis and y-axis are defined as under

C= IHp(XZ +y?)dx dy dz
A :mp(y2+z2) dx dy dz
Vv

B :I\J;Ip(22+x2)dxdydz

Similarly, the products of inertia w.r.t. pair of axes (Oy, Oz), (Oz, Ox) and (Ox, Oy) respectively are as

under

D:I\.Upyzdv; E:f\.[jpzxdv ; F:I\.prydv

For laminas in xy plane, we put z = 0, then

A= Hp y? dxdy
S

B= ”p X% dx dy
S

C= [[p(< +y) dxdy
S

D=E=0, F= ”pxydxdy
s
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1.6 M.I. of a body about a line (an axis) whose direction cosines are <A, p, v>

y4

L<A, pv>
N
d
P(x,Y, 2)
a
e—»
0 r y

Let & is a unit vector in axis OL whose direction cosines are < A, p, v >. Then
a=M-+pj+vk (1)
Let P (x, Y, z) be any point (particle) of mass of the body.

Then its position vector T is given by

OP=T =Xi +Yj+zK .2
Now _L distance of P from OL is

d=PN=OPsind = |Fx4| ..3)
= dz‘(xf+y]+zl2)><(ﬁ+u]+vﬁ)‘

= |(vy — p2) 1+ (A2 —vx) ]+ (ux —Ay)K|

= J(W—12)? + (02— vx)? + (ux—2y)?

= d= A2 +22) +p2 (2% +X2) +vE (X2 +Y2) —2uvyZ— 2V XZ — 2Auxy

]
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Therefore, M.1. of body about an axis whose direction cosine are A, p, v is
lo, = ZM{2(Y? +22) + 12 (2% + X2) + V2 (X2 +Y?)
—2uvyz — 2AvXZ — 2\ Xy}
=  loL=Ar +Bp?+ Cv?—2uvD — 2AvE — 2ApuF

1.7 Kinetic Energy (K.E.) of a body rotating about the origin O

Let axis of rotation be OL through O, then angular velocity about OL is W=wa.

ThenK.EE., T = Z% m (V. V)

=Lem |V |2
2
N -n:%mnmxnzwz [ V=WxF=WaxF]
= %WZ Y md? [using equation (3)]
1

= TZEWZ lov

This is the required expression for kinetic energy in terms of moment of inertia.

1.8 Parallel axis theorem
Statement: - For a body of mass ‘M’, we have
C=C'+Md*,
where C' = M.I. of body about a line GL through C.G. (centre of mass) and parallel to z-axis;

C = M.I. of body about z-axis (i.e. a line parallel to GL) and at a distance ‘d’ from GL.

]
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.| ]
Proof:
ZA
N
0 (0.0,0) Y
X

Let M = Mass of body and P is any point whose co-ordinates w.r.t. Oxyz are (X,y,z), G is the centre of
mass whose co-ordinates w.r.t. Oxyz are (X,Y,2).
Let us introduce a new co-ordinate system Gx'y’z’ through G and Co-ordinates of P w.r.t. this system are
(X",y',z"). Let T be the position vector of G and T, be the position vector of mass m; w.r.t. Oxyz system.
Now by definition of centre of mass of body,

Y
When centre of mass concides with origin at G with respect to new co-ordinates system Gx'y’z’, we have

Iy = 0. Therefore

m. T’

— =0 *m.T'= 0
M = [

zmx' _ 0 zmy _ 0 mz _ 0
M M M

where F'=Xi+yj+zk and T=xi+yj+zk
So, we have

]
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Xmx =Zmy =Xmz'=0 ..(D)
Now d*=(GN)*>=(0G)? - (ON)* = X* +y* +2° — 2°
= X% +y? (2
Co-ordinates of P w.r.t. (Ox, Qy, Oz) axes are (X, Y, z)
Co-ordinates of P w.r.t. (Gx', Gy, Gz') axes are (X', Y', Z")
Thenx= X+X,y=y+Yy,z2=7 +7
Thus, M.1. about z-axis is
C=32m (X +y
=Im [(X+X)" +(Y+Y)’]
=  C=Im[X®+X%+ 2XX+Y* +Y?+ 2yY']

=3m (x?+y'?) +3Im (X2 +y?)+2X Zmx’ + 2y=my’

C=Im?+y?)+ (X2+y?) Zm+0 [from (1)]
=  C=C +Md? [using (2) and =m = M, total mass]
Similarly, M.I. about x and y-axis are given by

A=A +Md?
B =B'+Md’

where d is perpendicular distance of P from x and y-axis.
For Product of Inertia
Here Product of Inertia w.r.t. pair (Ox, Qy) is
F=Zmxy=Xm(X+X) {y+Y)
=IM (XY +XY+XYy+X'y")
=ImX' Yy + Xy Zm+X Zmy'+yZIm x’
=F'+M Xy +0 [using (1)]
= F=F+MZXxy
Similarly, for products of Inertia w.r.t. pair (Oy, Oz) and (Oz, Ox) respectively, we have D=D'+M
yz and E=FE+ MZX

]
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1.9 Perpendicular axis theorem

(For two dimensional bodies mass distribution)

Statement: - The M.I. of a plane mass distribution (lamina) w.r.t. any normal axis is equal to sum of the
moments of inertia about any two L axis in the plane of mass distribution (lamina) and passing through
the intersection of the normal with the lamina.

Proof:

Let Ox, Oy are the axes in the plane of lamina and Oz be

the normal axis, i.e., Xy is the plane of lamina.

Let C is the M.I. about L axis, i.e., Oz axis

y
Heretoprove C=A+B
By definition, M.I. of plane lamina about z-axis, X

C= j j p (2 +y?) dS [for a continuous body]
S

= ”pxz ds + ”pyz ds
s S

= C=B+A
For mass distribution,
C=3m (x* +y?) = Tm x? + =my?
= C=B+A
For two dimensional body, D =E =0 and F = ¥mxy
Converse of perpendicular axis theorem:
Given C=A+B
To prove it is a plane lamina.
Proof: - Here A = £m (y* + Z%)
B=3m (Z% +x%), C=3m (x* +y?)
Now givenC=A+B
= Im (X +y?) ==m (Y’ + 7% +=m (22 + X9
=3¥m (Y + 22° + X%
= Imx? + Emy? = =my? + 25mz* + Tmx?

]
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= 2zmz*=0

= Zmz? =0 for all distribution of mass.
For a single particle of mass ‘m’,
mz’=0 =z=0asm=0

= It is a plane mass distribution or it is a plane lamina.

1.10 Angular momentum of a rigid body about a fixed

point and about a fixed axis

The turning effect of a particle about the axis of rotation is called angular momentum.

Let O be the fixed point and OL be an axis passing through the fixed point.

W =angular velocity about oL
T

= position vector of P (x, , z)

= T:@:xf+y]+zlz

Also linear velocity of Pis, v=wx?r ... 1)
z
L
Q)]
T » P(M)
@) / y
(fixed
point)
X

The angular momentum of body about O is

]
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H=X( xmv) = X[F xmWWxT)] )
H = m [Fx (WxF)]
=Em [(F.r)Ww—(T.W)r] [ Ax(BxC)=(A.C)B-(A.B)C]
=2m [r?W—(F.W)T]
= H=Cmr’) W—-Xm(.W)T ..(3)
If  H=hyi+h,j+hsk
and W=W, i+W, j+WsK .4
Then T.W=W;X+W,Yy+W53Z
.. From (3), we have
hy i+h, j+hgak=(Em r2) (wyi +w, j+w, k) -
=m (WiX + Wy + Wsz) (Xi+Yj+zK)
Equating coefficients of i on both sides,
hy = 2m G+ y? + 7%) Wy — m (WiX + Wy + Wsz) X
=3m (Y? + Z2%) wy + Zm x*w; — Imwy X2 — = m (Way + Wsz) X
=3m (Y? + Z%) wy — (Em Xy) W, — (Em Xz) W3
h; = Aw; — Fw, — Ews
Similarly,
h, = Bw, — Dw; — Fw;
hs = Cw; — Ew; — Dw; ...(5

h] A —F —E|[w,
h,| |-E =D C ||w,

Inertia matrix (symmetric 3 x 3 matrix)

1.11 Principal axis and their determination

]
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Definition: - If the axis of rotation W is parallel to the angular momentum H, then the axis is known as
principal axis.
If W=|Ww|a=wa

H=|H|a =  H=n W, wherenisaconstant
= H=nw
1.11.1 Theorem: - Prove that in general, there are three principal axes through a  point of rigid body.
Proof: For principal axis,

H=nWw =H=nw (1)

T
I

Let Ha, w=wa
where 4 is a unit vector along principal axis of body through O.

By definition of H,

=  H=Emr*)W-Im(r.W)r
Using H=nw, we get
NW = (Emr?)w—=m(F.W)F
Using W=wa, we have
n wa=Xmr’ Wa—Xm(.wa)T
Cancelling w on both sides and rearranging, we get
(Emr’ —n) a=Xm(r. )T ..(2)
Let T=Xi+Yy]j+zk, a=Ai+pj+vk ..(3)
where <A, u, v> are direction cosine of principal axis.
Then using (3) in (2), we have
(=mr? —n) (M+p]+vf<) =¥m [ (AX + py + vz) (xf+y]+zf<)]
Equating coefficients of i on both sides,
=  [Em ¢+ Y+ 29)-n] & = SM(AX® + pxy + vxz)

=  [Em(*+Z)-n]r =Em [uxy + vxz] [canceling =m Ax on both sides]

]
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= (A-nA-Fu—-Ev=0

Similarly, (B-nu-Dv-Fr=0 ...(4)
(C—n)v—EA-Du=0

or (A—nA-Fu—-Ev=0
—FL+B-nu-Dv=0 ...(5)

—EAX-Du+(C-n)v=0
Equation (5) has a non-zero solution only if
A-n -F -E
-F B-n -D|=0 ...(6)
-E -D C-n

This determinental equation is a cubic in n and it is called characteristic equation of symmetric inertia
matrix. This characterstic equation has three roots ni, n, nz (say), so ni, n,, Nz are real.
Corresponding to n = (n1, N, n3) (solving equation (5) or (6) for <A, u, v>), let the values of (A, u, v) be
(A1, w1, vi) >n=n
(A2, U2, v2) > n=ny
(A3, 13, v3) > n=n3
These three sets of value determine three principal axes &;,a,, a5 given by a, :kpfﬂtp ]+vp k , where

p=1,2 3.

1.11.2 Theorem: - Three principal axes through a point of a rigid body are mutually orthogonal.

Proof: Let the three principal axes corresponding to roots ny, ny, nz of characteristic equation
A-n -F -E
-F B-n -D|=0
-E -D C-n
be &, 4,, 4.
Let Ny,N,, A5 are all different.

Then from equation,

Emr*-n) 4=Im (7. T
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We have
(Emr® —ny)4, =¥m (f. 4,)T (1)
(Emr® —ny) &, =Im(F.4,)7 ..(2)
(Emr®—n3) 4, =Xm (1. &,)T ..3)

Multiply scalarly equation (1) by &, and equation (2) with &, and then substracts, we get
(n1—np)d,.4,=0

= 4,.4,=0 asn;#n,

Similarly &,.4, =0 and 4,.4, =0

= 4,, 4,,45 are mutually orthogonal.

Remarks: (i) If ny# n, # n3 , then there are exactly three mutually L axis through O.
(i) If n; = n3 (i.e. two characteristic roots are equal). There a,
is one principal axis corresponding to n; through O. Then

every line through O and L to this &, is a principal axis.

@)

Infinite set of principal axis with the condition that &, is

fixed.

(iii) If ny = ny = ng, then any three mutually L axes through

O (centre of sphere) are principal axes.

1.12 Moments and products of Inertia abo

and hence to find angular momentum
Let 4,,4,, 45 are the principal axes.
Let us take co-ordinates axes along the principal axes.
F=OP=X4, +Ya,+Z4,

=X+ Y2+ 27

DDE, GJUS&T, Hisar 22 |
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> Y
a;
a,
X

From equation,

(Emr’f—n) a=Xm(7. &)T
We have

(Emr’—ny) 4 =Xm(r. 4,) 7 (D

(Emr®-n,) &, =m(F.4,) T .(2)

(Emr’—n3) 4, =Xm(r. 4,) T ..3)

From (1), we have

(Emr® —ny) 4, =Em[(X4, + Y&, +Z4,) . 4,] [X4, + Y4, + Z4,]

=3Im X (X4, +Ya, +74,)

Equating coefficients of &,,4,, 4,
dmX*+Y?+Z%) —n, =Y mX®
0=) mXY (4
0=) mXZ
or  ni=zm(Y?+Z%=A*
and F*=0, E*=0

DDE, GJUS&T, Hisar 23|
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Similarly, from (2) and (3), we get
n,=B* D*=0, F*=0
and n3=C* E*=0,D*=0
where A*, B*, C* are M.l. and D*, E*, F* are product of Inertia about principal axes.

Inertia matrix for principal axes through O is
n, 0 O A* 0 O
0O n, 0|={0 B* O
0 0 ng 0O 0 C*
Expression for angular momentum (H):
Here D* =E*=F* =0, then from equation,
h; = Aw; — Fw, — Ews
We have
h; = A*wy — F*w, — E* wis
= hy = A*w, [~ F*=E*=0]
Similarly, h, = B* w,, h3=C* ws
H=h,a,+h,4, +h,4,
=A*w; &, +B*w, 4, +C*w, 4,
where (W, Wy, W3) are components of angular velocity about (4,,8,,45).

A*, B*, C* are also called principal moments of inertia.

Definition: Three mutually L lines through any point of a body which are such that the product of inertia

about them vanishes are known as principal axes.

1.13 Momental Ellipsoid

We know that M.1., o, of a body about the line whose d.c.’s are <A, u, v> s

lo = 1 = AA? + Bu? + Cv? — 2Dpv — 2Evi — 2FAp (D

DDE, GJUS&T, Hisar 24 |
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z
/
L<A, pv>
R / Pxy2)
© y
X
Let P (x, Y, z) be any point on OL and OP =R, then
R=RM\i+pj+vk) =xi+yj+zk
_ X y z
— A= — , == = — ...(2
R "R TR @

Now let P moves in such a way that IR? remains constant, then from (1) and (2), we get
Ax* + By? + Cz* - 2Dyz — 2Ezx — 2Fxy = IR? = constant
Since coefficients of x%, y%, z%i.e. A, B, C all are positive, this equation represents an ellipsoid known as

momental ellipsoid.

Example 1: - A uniform solid rectangular block is of mass ‘M’ and dimension 2a x 2b x 2c. Find the
equation of the momental ellipsoid for a corner ‘O’ of the block, referred to the edges through O as co-

ordinates axes and hence determine M.I. about OO’ where O’ is the point diagonally opposite to O.

]
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Solution:
AZ
(0, 0, 2¢)
0O’ (2a,2b,2c)
21 (0,20,0)
2a (0,0,0) y
(2a,0,0)

X

Taking X, y, z axes along the edges of lengths 2a, 2b, 2c, we obtain

A= [[[py* +2%) dv

I
he)
VR
<
N
N
(]
+
|
(0]
(@]

w
N—
o

<
o
X

_chza 3 2
_TI(Sb + 4¢? 2b) dx
0
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—p§8bj(b2+c ) dx

A= 16bc(b2+c)2a (8abCp)—(b2+C)

A-—(b2+c) [ here M = 8abc p ]

Similarly, B = %(c%az), (k%(a%bz)

2a2b

Now D= I\_[IPyZdVZ p.([_([

2a 2b 72 2c
= —— | dyd
p !y{z} y dx

0 0

yz dz dy dx

o—y

y(4¢?) dy dx

N I'o
o'—.g'\”

, 2a 2b 22a yz 2b
= D=2 dy dx =2c Z_| dx
o[ [yovoasf | 2]

0
2a 2a
= ¢ p [4b? dx=4b%c?p [dx
0 0

= 4b%c%p. 2a
= D=(8abc p) bc=M bc
Similarly, E =Mca, F=Mab

Using these in standard equation of momental ellipsoid, we get
% [(b2 + C2) X2 + (CZ + a2) y2 + (a2 + b2) 22]

— 2M [bc yz + ca zx + ab xy] = IR? (D
which is required equation of momental ellipsoid.
To find M.I. about OO’ :-
Using x = 2a, y =2b, z = 2c as O’(2a, 2b, 2¢)
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and R? = 4(a% + b + ¢?)
From (1), we have
4'3\/|[(b2 £C?)4a +(C? +a2)4b + (a2 +b?) 4] —8M(b?C? +c%a? +a’h?)

4(a® +b? +c?)

Ioo/ =

_ 8M| 2(2a%b? +2b%c? +2c%a?) - 3(a’c® +a°b? +b%c?)
= loo = 2 12 o2
3 4(a” +b” +c9)
2M (b%c? +c?a? +a’b?)
3 (@%+b%*+c?)

= |oor =

1.14 Check your progress

1. Give definition of moment of inertia of a system consisting of n particles.
2.  State perpendicular axis theorem for a two dimensional mass distribution.
3. What is Inertia matrix of order three?

4. What do you mean by principal axes?

5. Write the equation of momental ellipsoid.

1.15 Summary

In this chapter we have discussed about Moments and products of Inertia, theorems of parallel and

perpendicular axes, angular momentum of body, principal axes, and momental ellipsoid.

1.16 Keywords

Moments and products of Inertia, Theorems of parallel and perpendicular axes, angular momentum,

principal axes, momental ellipsoid

1.17 Self-Assessment Test

1.  Give a detailed account of moments and products of inertia.
2. Find the Moments of Inertia about co-ordinate axes for a uniform solid cuboid of mass M and
length of edge ‘a’.

]
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3. Determine the Moments and Products of Inertia about principal axes for a body and hence deduce
the expression for angular momentum of the body.

4.  Explain the term momental ellipsoid.

1.18 Answers to check your progress
1.  Moment of inertia of a body about a given axis is defined as the sum of the products of masses of
all the particles of the body and squares of their respective perpendicular distances from the axis of

rotation. So

| = Zmidi2 , Where n is the number of particles of the body.
i=1

2. Perpendicular axis theorem for a two dimensional mass distribution states that M.I. of a plane mass
distribution (lamina) w.r.t. any normal axis is equal to sum of the moments of inertia about any two
1 axis in the plane of mass distribution (lamina) and passing through the intersection of the normal
with the lamina.

3.  The inertia matrix is defined as

A -F -E
“F B -D
“E -D C

where symbols have their usual meanings.

4. If the axis of rotation W is parallel to the angular momentum H, then the axis is known as
principal axis.
Alternate definition: Three mutually L lines through any point of a body which are such that the
product of inertia about them vanishes are known as principal axes.

5. The equation given below represents a momental ellipsoid:
Ax? + By? + Cz? — 2Dyz — 2Ezx — 2Fxy = IR® = constant, where symbols have their usual

meanings.
1.19 References/Suggestive Readings
1.  F. Chorlton, A Text Book of Dynamics, CBS Publishers & Dist., New Delhi.
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2. Louis N. Hand and Janet D. Finch, Analytical Mechanics, Cambridge University Press
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Chapter - 2
Moment of Inertia -2

Structure:

2.0 Learning Objectives

2.1 Introduction

2.2 Equimomental Systems

2.3 Necessary and sufficient conditions for two systems to be equimomental
2.4 Examples based on equimomental systems
2.5 Coplanar distribution

2.6 Examples based on Coplanar distribution
2.7 Check Your Progress

2.8 Summary

2.9 Keywords

2.10 Self-Assessment Test

2.11 Answers to check your progress

2.12 References/ Suggestive Readings

2.0 Learning Objectives
In this chapter the reader will learn about equimomental systems and coplanar distributions.
2.1 Introduction

In this chapter, we shall be concerned with the equimomental systems, necessary and sufficient
conditions for two systems to be equimomental and coplanar distributions. Some examples based on the

equimomental systems and coplanar distributions are discussed in detail.
2.2 Equimomental Systems
Two systems are said to be equimomental if they have equal M.I. about every line in space.

2.3 Necessary and sufficient conditions for two systems to be

equimomental

]
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Theorem:- The necessary and sufficient conditions for two systems to be equimomental are :

Q) They have same total mass.
(i) They have same centroid.
(iii) They have same principal axes.

Proof: - Part A: The conditions (i) to (iii) are sufficient. Here we assume that if (i) to (iii) hold, we shall

prove that two systems are equimomental. Let M be the total mass of each system.

3 I syster?, (< 1 v3)
)

| system

0 (<A, v>)

Let G be the common centroid of both the system. Let A*, B*, C* be the principal M.I. about principal
axes through G for both the systems. Let ¢ be any line in space with d.c. <A, u, v>. We draw a line ¢’
parallel to ¢ passing through G. Let h = L distance of G from /.
M.I. about ¢’ for both the system is
|, = A*A? + B*p? + C*v?
[ Product of inertia about principal axes i.e. D* = E* = F* = 0]
So by parallel axes theorem, the M.I. of both the system about 7 is
I, =1, + Mh?
= 1,= A*A\?+ B*u? + C*v* + Mh?
Hence both the systems have same M.I. about any line of space. So they are equimomental.
Part B: - The conditions are necessary. Here we assume that the two systems are equimomental and

derive condition (i) to (iii). Let M; and M be the total masses of the two systems respectively and G; &

G, are their centroid respectively.

]
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.| ]
Condition (i)
4
h
My
M;
Gs

Since the systems are equimomental, i.e., they have same M.I., ‘I’ (say) about line G1G; (in particular).
Let ¢ be the line in space which is parallel to G; G, at a distance h. Then by parallel axes theorem, M.I.
of Ist system about # = | + M1h? and M.I. of 1Ind system about ¢ = | + M,h?,
Since the two systems are equimomental, therefore we have,

| + M3h® = | + Mph?
= M; =M, = M (say)
This implies that both the systems have same total mass.
Condition (ii)

H; H.

al
=\

Let G1H; and G,H, be two parallel lines each being L to G; G,. Let I* be the M.I. of either system about
a line GiH; and 1 to G;G; (through G,).
Using parallel axes theorem,
M.1. of Ist system about G,H, = I* + M (G1G,)?
M.1. of 1Ind system about G,H, = I* — M (G;1G,)?
As the systems are equimomental, therefore
I* + M (G1G)? = I* — M (G1Gy)?
=  (G:Gy)*=0asM=0

]
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= G1 =G, =G (say)
= Both the systems have same centroid.

Condition (iii):- Since the two systems are equimomental, they have the same M.I. about every line

through their common centroid. Hence they have same principal axes and principal moments of inertia.

2.4 Examples based on equimomental systems

Example 1:- Show that a uniform rod of mass ‘M’ is equimomental to three particles situated one at

each end of the rod and one at its middle point, the masses of the particle being % % and M

3
respectively.
Solution: - Let AB = 2a is the length of rod having mass ‘M’.

A

B

M ™M WM
o 6
Let m, M — 2m, m are the masses at A, G, B respectively. This system of particles has same centroid and
same total mass M. This system of particles has the same M.I. (i.e. each zero) about AB, passing through
common centroid ‘G’. Therefore, systems are equimomental.

To find m: - We take M.I. of two systems (one system is rod of mass ‘M”) and other system consists of
particles.

2
M.I. of rod about GL = I\/ITa

M.1. of particles about GL = ma? + 0 + ma®

= 2ma’
As systems are equimomental,
2
2ma’ = Ma”
3

M
-  m=—
6

DDE, GJUS&T, Hisar 34|



Mechanics MAL-513
. ___________________________________________________| ]
and M-2m= M—M:Z—M

3 3
So masses of particles at A, G, B are %ZTM% respectively.

Example 2:- Find equimomental system for a uniform triangular lamina.

Solution: - A

B D C
<<——a — 5

Let M = Mass of A lamina.

Let L distance of A from BCis=h

i.e. AD=h

First find M.I. of A lamina ABC about BC.

M= %ah o, Where o = surface density of lamina

= c= aih (density = Mass/area)
2}
Now BC _h=X
BC h
= B'C' = M = length of strip

Area of strip B'C' = M&

]
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Mass of strip = 2?1 ah _hX)SX
)
2M
= el (h — x) dx

M.I. of strip B'C’ about BC = i—l\z/l (h—x) x*8x

M.1. of A lamina ABC about BC

h
:j@(h—x)xzdx
h
0
_2M[ hx® xﬂh
- A X
h2| 3 4]
_2M(-h* h*) 2mnh*
h2l 4 3) h?12
= I:%Mhz (D

Now we apply this result to general case of finding M.I. about any line 7 in the plane of lamina.

Let hy, hy, hs are length of L drawn from corners (or points) A, B, C respectively of AABC such that h; <
h, <hs .

We extend BC to meet a point ‘D’ on line ¢'. We draw a line ¢’ through A and parallel to /.

]
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Distances of C and B from ¢’ are h3 —hy, hy—h;
Let M; is the mass of AACD and M, is the mass of AABD
This = M=M;—-M,

1
» M, O,ADM; =)
M, 1
> o, AD(h, ~h))
Ml_h3_h1
~ M, h,—h,
hs—hy  h,—h, h;—h,
_ M(h,-h,) _ M(h,-h,)
Mp=—2_1 M,=—r2_1 L2
- h,—h, 2" h,—h, ()

We denote 1, as the M. I. of AABC about 7 and I, as the M. I. of AABC about /" and Ig as the M.I. of
AABC about a line parallel to ¢ or ¢’ through centre of mass (G) of AABC. So then
I, = M.l. of AACD — M.I. of AABD

1 , 1 :
= —-Mi(hs—hy) = =My(h,—h
5 1(hs —hy) 5 2 (2 — hy)

M (hy—hy)* ~(h, —hﬂ
6

hs—h, [using equation (2)]

%_EEZ :23:| [(hs — h0)? + (hy — h)? + (hs = hy) (h — hy)]

[+ a®—b®=(a—b) (a° + b + ab)]

= 1, = %[hg+hf-2h1h3+h§+hf-2h1h2+h2h3-h1h2-h1h3+h12]

- %[3hf+h§+h§+h2h3—3h3h1—3h1h2] 0

(hy +h, +hy)

Now L distance of G from ¢ = 3

()

]
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. ___________________________________________________| ]
and L distance of G from ¢ = (wﬂ—hlj )
Using parallel axes theorem, we have

M

l,=lg + E(hl + h, + hg)? ...(6)

M 2

and I, =l + 3 (h2 + hz — 2hy) ...(7)
M 2

Now (7)3 lc = I, - E(hz'i' h3—2h1) ...(8)

Put equation (8) in (6), we have

l, = 1, + %(hl +hy + hg)? — %(h2 + hg — 2hy)?
= %[3h12 +h3 +h3 +h, hg — 3hsh; — 3hyhy]
+ %(h1 +hy + hg)? — %(h2 + hs —2h,)? [using (3)]

_ %[Bhf +h2+h2 +h,h, —3h, hy — 3uhy] + %[hf +h2+h2 + 2hh,
+ 2hyhg + 2hshy — h3 —h3 —4hZ —2h,h, +4h,h;+4h;h,]

= = %[hf+h§+h§+ hy hy + hy hs + hy hy]

.M (hl+h2)2+(h2+h3j2+(h3+hlj2
© 3 2 2 2

= M. I. of mass % placed at mid-point of A and B about | +

M.1. of mass % placed at mid-point of B and C about | +

M.1. of mass %plaeed at mid-point of C and A about | .

]
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i.e. which is same as M.I. of equal particles of masses 3 at the mid-points of sides of AABC.

Example 4:- Find equimomental system for a uniform solid cuboid.
OR

Show that a uniform solid cuboid of mass ‘M’ is equimomental with

Q) Masses M at the mid-points of its edges and % at its centre.

(i) Masses Z—I\Z at its corners and 2?M at its centroid.

Solution:-
z
B7
Pe Cazaza) ] (0,2a,2a)
(2a,0,2a) o _ I12 o7 5
Ps 1 ﬁﬁ@ +Be
Po o X Y 1B | 0(0,23,0)
o Bl 152' y
1 ' Ps

x (2a00) Bs

Let length of edge of cuboid = 2a

Coordinates of mid-point of edges of cuboid are
B1=(a,0,0), B>=(0,a 0), Bs= (0,0, a), B+ = (2a, a,0), Bs = (a, 2a, 0),
Bs = (0, 2a, a), B7 = (0, a, 2a), Bs = (a, 0, 2a), Bs = (23, 0, @), B1o = (24, 2a, a),
B11 = (a, 2a, 2a), P12 = (24, a, 2a)

Let G be centroid and p is the density of cuboid, then
M = pV = p(2a)® = 8pa° (D

Now we find M.I. and Product of Inertia of cuboid about co-ordinates axes.
Therefore, A = M.I. of cuboid about x-axis

]
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2a2a?2

= [[Jp* +22) dv=p] | [(y* + 2} dxdydz

2
1Y)
Y]

- 8y (8pa®) _8 [using (1)]
3 3
Similarly, B =M. I. of cuboid about y-axis = gMa2

C = M.I. of cuboid about z-axis = g Ma?

Now D = product of inertia of cuboid w.r.t. pair (Oy, Oz)

2a 2a

J. Ipyz dx dy dz = (8a° p) a*
00

1Y)
1Y)

2
= D=
0

- D=Mad
Similarly, E =F =Ma’

(i) Now consider a system of particles in which 12 particles each of mass Z_I\ill are situated at mid-point of

edges, i.e. at B; (i = 1 to 12) and a particle of mass % at G.

Total mass of this system = 12 M +M
24) 2
= M+M:M

2 2

= The two systems have same mass. Also the centroid of these particles at B; and G is the point G itself
which is centroid of cuboid.
= The two systems have same centroid.

Let A’ = M.1. of system of particles at (3; and G) about x-axis

= $m (2 +2%) + %(Zaz)

= A’:2—“1[0+a2+a2+a2+4a2+5a2+5a2+4a2+a2+5a2+8a2+5a2]

]
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M
+ —(2a
5 (227)
= A= M(4Oa2)+Ma2 _ a2 8
24 24 3
Similarly, B' = M.I. of system of particle about y-axis = £m (z* + x%)

= B':§Ma2
3

Similarly, C’ = g Ma?

Now D’ = M.I. of system of particles w.r.t. (Oy, Oz) axes
=Xmyz
= 2—'\£|1[0+0+0+0a2+0+2a2+2a2+0+0+2a2+4a2+2a2]+ %(az)
= D= 2—“2(12a2)+%a2=%a2+%a2=Ma2
Similarly, E'=F =Ma’
= Both the systems have same M.I. and product of inertia referred to co-ordinate axes through O.
Using parallel axes theorem, both systems (i.e. cuboid and particles) have identical moments and
products of inertia referred to parallel axes through common centroid G. So both the systems have same
principal axes and principal M.1.
Therefore both the systems are equimomental.

(if) Now let A" = M.I. of system of particles at (o and G) about x-axis
M (0 + 4a° + 4a° + 4a% + 8a® + 4a° + 8a°) + 2\ (2a%)
24 3
= M(32 Ma?) + Imvaz= 2maz+ 2 a2
24 3 3 3

=  A"= gMaz

Similarly, B = C"" = gMa2
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Also D" = M.I. of system of particles w.r.t. (Oy, Oz) axes

M

:—[O+O+0+0+4a2+0+4a2]+Z—M(az)
24 3

= D'=Ma

Similarly, E” = F”" = Ma?

= Both the systems have same M.I. and product of inertia referred to co-ordinate axes through O.

Using parallel axes theorem, both systems (i.e. cuboid and particles) have identical moments and
products of inertia referred to parallel axes through common centroid G. So both the systems have same
principal axes and principal M.1.

Therefore both the systems are equimomental.

2.5 Coplanar distribution

2.5.1 Theorem:- (i) Show that for a two dimensional mass distribution (lamina), one of the principal

axes at O is inclined at an angle 0 to the x-axis through O such that tan 26 = 2k

B-A
where A, B, F have their usual meanings.
(ii) Show that maximum and minimum values of M.I. at O are attained along principal axes.
OR
Theorem:- For a 2-D mass distribution (lamina), the value of maximum and minimum M.I. about lines
passing through a point O are attained through principal axes at O.

Proof:-
yl
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Let us consider an arbitrary particle of mass m at P whose co-ordinates w.r.t. axes
through O are (X, y), then for mass distribution, we have

M.1. about x-axis, i.e. A = Tmy?

M.1. about y-axis, i.e. B = Zmx? (D
and  Product of inertia F = Zmxy
We take another set of L axes Ox', Oy’ such that Ox’ is inclined at an angle 6 with x-axis.
Then equation of line Ox’ is given by

y = X tanf

= ycos0—-xsin6=0 ...(2)

Changing 6 to 6 + g the equation of Oy’ is

—ysinO—xcos06=0
= ysin®+xcos0=0 ...(3)
Let P(x', y') be co-ordinates of P relative to new system of axes Ox’, Oy’, then
PL =y’ = length of L from P on Ox’

_ ycosf—xsin6

~ Joos?0-+sin?0

=ycosO—-xsino ...(4)

Similarly, x’=PN = length of L from P on Oy’
_ ysinf+xcosb
Jcos? 0 +sin?

=ysinO+xcoso ...(5)

Therefore,
M.I. of mass distribution (lamina) about Ox’ is
loy = Zmy’? = =m (y cos 6 — x sin 0)?
=¥ m (y?cos?0 + x? sin%0 — 2xy sin 0 cos 0)
lox = €0s°0 T my? + sin’0 £ mx? — 2 sin® cosd Tmxy

= A c0s0 + B sin’0 — F sin 20 ...(6)

]
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Similarly, M.I. of mass distribution (lamina) about Oy’ is given by
T . T . T
loy = A c032(§+(-)j +B smz(z +6j ~-F sm2(§+0j

= Asin®6 + B cos’ 6 + F sin20 (7
Product of inertia w.r.t. pair of axes (Ox’, Oy'),
Iy = ZmX'y’
=Xm(y sin 6 + x cos 0) (y cosd — x sin 0)
= gy =5in6 cos® Tmy* — sind cosd T mx’
— sin’0 Tmxy + c0s0 Tmxy
= A sind cosO — B sind cosh + (cos?0 — sin?0) F

- (A-B) sin 20

+ F cos20 ...(8)

The axes Ox’, Oy’ will be principal axes if
Ix'y' = 0

Using equation (8), we have

%(A—B) sin26 + F c0s26 =0

= tan 20 = i
B-A
9= it 2 ...(9)
2 B-A

This determines the direction of principal axes relative to co-ordinates axes. We shall now show that
maximum/minimum (extreme) values of loy, loy are obtained when 0 is determined from (9).

We rewrite, lox and loy as

lox = %(A+B)—%[(B—A) cos 20 + 2 F sin 20] ...(10a)
1 1 :
loy = E(A+B)+§ [(B - A) cos 20 + 2 F sin 20] ...(10b)

For maximum and minimum value of lox, loy,

]
DDE, GJUS&T, Hisar 44 |



Mechanics MAL-513

d d
—(lo,) =0 d —

(IOy') =0

le. %[(B—A) cos 20 + 2F sin 20] =0

= —(B—-A)2sin20 +4Fcos20=0

2F

= tan20 = ———
B-A

(1)

Similarly, % [(B—A)cos 26+ 2Fsin20]1=0

= —-(B-A)2sin20+4F cos20 =0
= tan29:i
B-A

So extreme values of lox and loy are attained for 6 given by equation (11) already obtained in (9).
Therefore, the greatest and least values of M.I. for mass distribution (lamina) through O are obtained
along the principal axes.

The extreme values are obtained as under:

We have, tan 20 = sin 29 = 2F
cos20 B-A
sin 20 _ €0s20 _ 1
2F  B-A  aF2+(B-A)
= sin 20 = 2F
JAF2 +(B—A)?
and cos 20 = B-A

JAF2 +(B—A)?

Now from (10a), we have
lox = %(A+ B) — %[(B—A) cos 20 + 2 F sin 20]

Using values of cos 26 and sin 20 , we obtain the extreme values of lox and loy as under

]
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IOx’:l(A+B)_£ (B-A)B-A) ., AF2
2 2| JaF2+(B-A)? 4F?+(B-A)

1 1
=—_(A+B)- =
2( ) 2

(B—A)? +4F?
JAF? + (B-A)?

= %(A+ B) - % [V4F2 +(B-A)?]

Similarly, loy = %(A +B) + %[\/4F2 +(B-A)?]

2.6 Examples based on coplanar distribution

Example 1:- A square of side ‘a’ has particles of masses m, 2m, 3m, 4m at its vertices. Show that the
principal M. 1. at centre of the square are 2ma?, 3ma?, 5ma’. Also find the directions of principal axes.
Solution:

Taking origin O at the centre of square and axes as shown in the figure, we have

A = M.1. of system of particles about x-axis

4 2 2 2 2
= > myl= m(_—a) +2m(_—aj +3m(§) +4m (gj
- 2 2 2 2

5 2

= A=>ma (D)
2
y y
N
i
aa)% N R E,EJ
S 7,5 AN N ’ 22
4m 3m/ X'
O 0 X

DDE, GJUS&T, Hisar 46 |



Mechanics MAL-513

2 2 2 2
Now B=ImixZ?=m “a)  soml 3 1am[ @) +am[ 22
2 2 2 2

= Bzgmaz .2

C=B+A =5ma’

For a two-dimensional mass distribution, D = E =0 and

eomnen([2)3 221

_ma* 2ma® 3ma® 4ma’ , 3,

= F= — + — =ma’-=ma
4 4 4 4 2
=~ F= ima?
2
Let Ox’, Oy’ be the principal axes at O s. t. Zx'Ox = 6.
Then, we have loy, = A cos’0 — 2F sind cosd + B sin’0 (D)
loy = A sin?0 + 2F sind cos6 + B cos’0

and Loy = %(A —B) sin26 + F cos20

Since Ox' and Oy’ are principal axes, therefore Iy, =0

= %(A—B) sin20 + Fcos 26 =0 ...(3)
= tanzezi
B-A
S
Now (3) = cos20=0 [°.'A:B:§ma]
-~ 20=r = 9=T
2 4

= Diagonals OR and OS are principal axes.

Therefore,

]
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5 (1 —ma? (1
lor=—-ma*| = |-2 — |+
T2 @ ( 2 j(zj
= IOR:3ma2
and los = 2ma’ on.=§ma2(lj—2.l maz(l}é maz(lj
2 2 2 2) 2 2

M.I. about z-axisis C=B + A
= C = lor+ los = 3ma? + 2ma?

= C =5ma’.

2.7 Check Your Progress

1.  Define equimomental systems.

2.  State necessary and sufficient conditions for the two systems to be equimomental.

3. Find equimomental system for a uniform solid cuboid of mass M.

4. About which axes, the maximum and minimum values of M.I. at origin O for a two dimensional

mass distribution (lamina) are attained?

2.8 Summary

In this chapter we have discussed about Equimomental systems, necessary and sufficient conditions

for two systems to be equimomental, coplanar distributions.

2.9 Keywords

Equimomental systems, coplanar distributions

2.10 Self Assessment Test

1. Find Principal direction at one corner of a rectangular lamina of dimension 2a and 2b.

2. Find equimomental system for a parallelogram or prove that parallelogram is equimomental with

particles of masses M/6 at mid-points of sides of || and 3 at the intersection of diagonals.

2.11 Answers to check your progress

]
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1.  Two systems are said to be equimomental if they have equal M.I. about every line in space.
2. The necessary and sufficient conditions for two systems to be equimomental are :

(i)  They have same total mass.

(i)  They have same centroid.

(iii) They have same principal axes.

3. A uniform solid cuboid of mass ‘M’ is equimomental with

(i) Masses Z_I\fl at the mid-points of its edges and % at its centre.

(i)  Masses Z—I\Z at its corners and M at its centroid.

4.  Principal axes

2.12 References/ Suggested Readings

1.  F. Chorlton, A Text Book of Dynamics, CBS Publishers & Dist., New Delhi.
2. Louis N. Hand and Janet D. Finch, Analytical Mechanics, Cambridge University Press
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Chapter - 3
Generalized co-ordinates and Lagrange’s Equations
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3.0 Learning Objectives

In this chapter the reader will learn about generalized coordinates, Holonomic and Non-holonomic
systems, Lagrange’s equations for a holonomic system, Lagrange’s equations for conservative and
impulsive forces, Kinetic energy as quadratic function of velocities, Donkin’s theorem and generalized

potential.

3.1 Introduction

A system of moving particles forms a dynamical system. The set of positions of all the particles is
called the configuration of the dynamical system. Constraints impose difficulties in studying the
dynamics of a system. The forces of constraints acting on a dynamical system restrict some of the
coordinates to vary independently. The resulting equations of motion are not necessarily independent. As
a result a set of independent coordinates are required for the description of the configuration of a
dynamical system.

Cartesian coordinates are just fine for describing particles that can move unconstrained throughout space.
But when the motion is constrained in some way, another choice of coordinates may be preferable. Thus

generalized coordinates help us to overcome such type of problem.

3.2 Some Basic Definitions

3.2.1 Generalized Co-ordinates
A dynamical system is a system which consists of particles. It may also include rigid bodies. A Rigid
body is that body in which distance between two points remains invariant. Considering a system of N
particles of masses my, my,......., my Or m; (1 <1< N). Let (%, y, z) be the co-ordinates of any
particle of the system referred to rectangular axes. Let position of each particle is specified by n
independent variables qi, Qa....., gn at time t. That is

X =X (01, G2,-.- »qn; 1)

Y=Y (0 02, qn; 1)

2=2 (01, Y2, qn; 1)
The independent variables g; are called as “generalized co-ordinates” of the system.

3.2.2 Generalized Velocities

]
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Let the dynamical system consists of N particles of masses m; (1 <i < N) and at time t, suppose each

da.
particle is specified by ‘n’ generalized co-ordinates g (j =1 to n). Then the ‘n’ quantities {; :i (=

dt
1 to n) are called the generalized velocities of the system, where we use -’ to denote total differentiation
w.r.t. time.

Result: Let T, be the position vector of particle of mass m; at time t. Then

G = (01 G2, Qo 1) (1)
. dF,

Then F=—1

en i at

. of dg, o dq or dg, On
F=—1-1 i 24 4 i FHn A

= T dt Tag, dt T aq, dt et
. 0% o S/ A

= =0 —F+0, —+..+q, —/—+—=

0% "0y qn Ot

We regard ¢, q,,......6,,, t as independent variables. So,

o _af
aq; A

3.2.3 Holomonic and Non-Holonomic systems
If the ‘n’ generalized co-ordinates (i, O»,..., qn) Of a given dynamical system are such that we can
change only one of them say q; to (g1 + 8q;) without making any changes in the remaining (n—1) co-

ordinates, then the system is said to be Holonomic otherwise it is said to be “Non-Holonomic” system.

3.2.4 Virtual displacement

Suppose the particles of a dynamical system undergo a small instantaneous displacement independent of
time, consistent with the constraint of the system and such that all internal and external forces remain

unchanged in magnitude & direction during the displacement.

3.2.5 Virtual Work and Generalized forces

]
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Consider a dynamical system consisting of N particles of masses m; (1 <i < N). Let m; is the mass of ith

particle with position vector T, at time t; it undergo a virtual displacement to position T, + JF,.
Let . = External forces acting on m;

and F' = Internal forces acting on m;

Therefore, virtual work done on m; during the displacement JF; is
(F+F).8%

. Total work done on all particles of system is,

where 8W is called virtual work function. If internal forces do not work in virtual displacement, then

N —
D F .t
i=1

0

|

S8

i=1

So oW

=l

Let X, Yi, Z; are the components of IE, and &xi, dyj, oz are the components of JF,,

ie. FR=(X.,Y,Z) and  &F =(8x;,dy;,8z;)
N
Then 8W = ) (X;3X; +Y; dy; +Z;3z;).
i=1
Let the system is Holonomic, i.e., the co-ordinate g; changes to g; + dq; without making any change in
other (n—1) co-ordinates.
Let this virtual displacement take effect and suppose the corresponding work done on the dynamical

system to be Q; 6g;, then

]
DDE, GJUS&T, Hisar 53|



Mechanics MAL-513

N
Q;dg;= ) F. &F
i=1
Now, if we make similar variations in each of generalized co-ordinate g;, then
n N__
W= Q; 8q, =D F .4
= i=1
Here Q; are known as Generalised forces and dq; are known as generalised virtual displacements.

3.3 Constraints of Motion

When the motion of a system is restricted in some way, constraints are said to have been introduced.

Constraints

v v

Holonomic Non-Holonomic
Co-ordinates are related by Co-ordinates are related
equations f(t,,1,,...,t,,t)=0 through inequalities
Holonomic
Scleronomic Rheonomic
1. Time independent i.e. Time dependent i.e. derivative
derivative w.r.t. tis w.r.t. t is non-zero.
zero
2. Independent of Constraints depends explicitly
velocities (x,V,z) on time

Examples of Holonomic constraints:

]
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1. (F —F,)* = constant

2. f(r,...T,t) =0
Example of non-Holonomic constraints:
Consider the motion of particle on the surface of sphere. Constraints of motion is (r* — a%) > 0 where ‘a’

is the radius of sphere.

3.4 Lagrange’s equations for a Holonomic dynamical system

Lagrange’s equations for a Holonomic dynamical system specified by n-generalised co-ordinates g; ( j =
1,2,3,.....,n) are
d{ oT | oT
L N QJ I}
dt 6q 6q i
where T = K.E. of system at time tand Q; = generalized forces.
Proof: Consider a dynamical system consisting of N particles. Let m;, T; be the mass, position vector of

ith particle at time t and undergoes a virtual displacement to position T, +dF; .
Let . = External force acting on m;

F = Internal force acting on m;
Then equation of motion of ith particle of mass m; is
F+F=m7, (D

The total K.E. of the system is,

Zimm 2)
o[ (2.3 2|
Now a{—l—(a kz o [an e
dar. . L. O
{ dt =i = ; dt a H%&h}
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Also we know that

or, _ of
o, o,

Consider

_1d - 0 ;2
o g

Multiplying both sides by m;

s _d o (1g
Zmi i___dtliaq (zzmiri

i=1

and

ﬂ .

taking

[~ qy are independent of q]
...(4)
...(5)
[using (4)]
[Using (5)]
summation over i = 1 to N, we have

MAL-513

ot
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]
N -~ o dfoT )| oT .
= F+F)=—/=—| =— |- [Using (1) and (2)] ...(6)
; aq; dt(aqij o
Also we have the relation,
n N__ N -
dW= > Q;8q; =D F .8 =) [F+F].5F% A7)
j=1 i=1 i=1
Since the system is Holonomic, we regard all generalized co-ordinates except g; as constant. Then, (7)
gives
N - —_—
Qdq = ) (R +F) oF ...(8)

i=1
N
= Q=) (R+F)—=
J |Z—l: 00
N . =, aﬁ
=  Q=).(R+FR)=*~ ...(9)
i1 aq;

Therefore from (6) and (9), we get

d(aT ) aT
e | ==Q;, i=1,2...,
dt{aqj oq; o '

This is a system of n equations known as Lagrange’s equations.

3.5 Example of Planetary Motion

(m)
P(r,0) P — Planet
pm S — Sun (fixed)
r_2
0
S (fixed) Initial line

Let (r, ©) be the polar co-ordinates of P w.r.t. S at time t.

. i : m
Under the action of inverse square law of attraction, force = L

I,.2
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Here radial velocity = f

and transverse velocity = r0

Here (r, 0) are the generalized co-ordinates of the system and K.E. is
T= %m(rZ +r262) [... VZ :rZ +r2 62]

wherer, 6, f, 0 are independent. As the system is Holomonic, the virtual work function is given by

SW = (‘“mjawo [+ W =2Q, 8q; = Q, 5q; +Q, 8q, = Q, dr+Q, 50]

r2
= Q= —p;m
r
and Qp=0
Now ﬂzg[lm(f2+r202)J
or or|2
I _ mi?
or
and ﬂ:0
o)
Also g_:mr, I mé
or 0
Therefore Lagrange’s equations are
d(or) or
el el e .1
dt(@r) or N O
d(or) oT
d = (2
o dt(aej ST @)

Then from (1), we have

_:;m ..03)

d, _ :
— (M) —mré* =
prdQLY

=  mi-mré>=—;
.

]
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=  r-re?="k ..(4)
r

From (2), we have

d Y
— 0)-0=0
dt(mr )

4 126)=
= dt(r 0)=0 ..(5)

3.6 Lagrange’s equation for a conservative system of forces

Suppose that the forces are conservative and the system is specified by the generalized co-ordinates g; (j
=1, 2,...,n). So we can find a potential function
V(d1, 9z,..., qn) such that W = — 8V,

where 8V = ﬂéql +ﬂ6q2 +...+ﬂ8qn

a9y a9, aq,
R swz[%v] 5,

= j

= Zn: Qj 8q; = _Zn: (:;TVJ 6q;
= j

=1
Q=" (D)

Therefore, Lagrange’s equation for a conservative holonomic dynamical system becomes

dl{oT | oT ov

— - — = — , j=1,2,...,n
dt{ag;) oa; A
d{ oT 0
or —| — |-—(T-V)=0 ...(2)
dt\ ag; ) oq;
Let L=T-V, whereL is Lagrange’s function.
d{ oT | oL
Then(?)=> —|—|-—=0 ...(3)
dt{aqj a;

]
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Since V does not depend upon ¢,ds,...4,

oV
Yoo ...(4)
o]
Then using (4) in (3), we obtain
d a__'- _i:o ,j=1,2,...,n
dt\ 69; ) oq;

3.7 Generalised components of momentum and impulse

Letq; G =1, 2,...., n) be generalized co-ordinates at time t for a Holonomic dynamical system. Let T =
(9w 92,----, qn, 4y, G5,--.. 4,,, t) be the Kinetic energy. Then, the n quantities p; is defined by

_or

pj-aj

; G=1,2,...,n) are called generalized components of momentum.

We know that Lagrange’s equation is

dyar|_oar _,
dt\ e, | oq;

d oT
Qo)=L o
NowT = —mv2 =im#2=1m (X +y* +2%)
2 2 2

Then px= %:mx

Similarly, py=my , p,=mz

For generalized forces Q; j =1, 2,...., n) for dynamical system, the n quantities J; defined by

Lt
Qj—
0

Ddet}zJj (finite) when limit exists, are called generalised impulses.
0

n
Since dW = Qquj , 3=1,2,...,n)
=L
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‘E—)

n
=

MAL-513

where 8U is called impulsive virtual work function given by 6 U = Lt ISW dt.

‘E—)O

3.8 Lagrange’s equation for Impulsive forces

It states that generalized momentum increment is equal to generalized impulsive force associated with

each generalized co-ordinate, i.e., Ap; =Jj, j=1,2,....,n

Derivation: - We know that Lagrange’s equations for Holonomic system are

d(oT | oT .
= == |-===Q; =1,2,...

= (p )—a:Qj
j

Integrating this equation fromt=0tot =1, we get

(e~ (Peo= | 2

0 “Mj
Let Q;— oo, T — 0 in such a way that

Lim !Qj dt=1J, (finit)  , G=1,2,....n)

0

Further as the co-ordinate g; do not change suddenly,

1:»0

—dt 0
q;

0 i

Writing Apj = Lt [(pj)t= — (Pj)t=o0],
0

N dt+jQJdt L (=12

(1)
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We thus obtain Lagrange’s equation in impulsive form

Apj = Jj , j=1,2,....,n

3.9 Kinetic energy as a quadratic function of velocities

Let at time t, the position vector of ith particle of mass m; of a Holonomic system is T, then K.E. is

—im i’ (1)

I\)H

where N is number of particles. Suppose that the system to be Holonomic and specified by n generalized

co-ordinates qg; , then ¥, =T, (q, 02,...., qn; t)

dr. . or o, or. o .
T= =( +Q,—"+..+0,—/—+— ,(i=1,2,...,N) ...(2)
dt tag, o, o, ot

From (1) and (2), we have

+

F .o
Zm[qlaqlJqu&qz ...+qnaqn A

= lim(q ﬁ+q ﬁ-l— +q ﬁjz
27 (Mo, o, M ady

oF ot arjz

1 (87})2 N 5( .o j
+>ym = | +> m—=q +..+(
zg ot Z g, Tt

1 , _ . .
= T= E[(alqu +85 05 oot 8y, G +283, GG e y

+2 (a1 g, +a,q, +....+a,0,)+a] ..(3)

N or. [ oF
where a, = asr = m{ 'J( 'J, s>
aq, )\ aq;

i=1

(3 ) (%

i=1

Equation (3) shows that T is a quadratic function of the generalized velocities.
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Special Case: - When time t is explicitly absent, then T, =T, (q1, g,...., qn)

- dr. Oor. o, OF.
dt “og, g, o,
and —=0
ot

From (3), we get
1 ) . . .. .
T= E[alqu+a22q§+.......+annq§+2a12q1q2+ ........ _

13 .
= Ezzars Qrds
s=1r=1
Thus the K.E. assumes the form of a Homogeneous quadratic function of the generalized velocities
Q1’QZ' ' Qn '
In this case, using Euler’s theorem for Homogeneous functions, we have
or or ar

h—+q, —+..+q, =—=2T
Mog, " Meq, MG,

= Py +02P; +...+,Py =2T

3.10 Donkin’s Theorem

Let a function F (uy, Ua,...., un) have explicit dependence on n independent variables uy, U,,..., u,. Let the
function F be transformed to another function G = G (v1, Va,..., vy) expressed in terms of a new set of n
independent variables vi, Va,..., v, Where these new variables are connected to the old variables by a
given set of relation

_ oF

= —, 1=1,2,.....,n (1
o (1)

Vi
and the form of G is given by
n

G (V1, V2o V) = DU Vi — F (Ug, Uz ,....1n) .(2)
i=1

then the variables uy, Uy, ..., u, satisfy the dual transformation
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uj = %G: ...(3)

n
and  F Uy, Uz, ..., un) = D U; Vi =G (Va, Va,...., vy)

=]
This transformation between function F & G and the variables u; & v; is called Legendre’s dual
transformation.

Proof: Since G is given by

G (Vl, V2, Vn) - Zuk Vk _F(ul1 u25 * )
k=1
n
Then -0 > UV —F(uyg,u,..up)
i Vilia
50U, LoV, <~ OF du,
=y Kv +>u —
ez OV, “ uzﬂ: kaVi ;auk v,
= @ au_ +Zu 8k| ﬁ%
oV, T oV, ax OUy OV,
_ oy - OF ouy
=) —V +Uj— ) ——=
iz OV kz OUy OV
Souy OF S OF auy oF
=) 2K 7 L (1 V, =—
2wy 2 U ey o, { H= auj
= U;
. Ly
o

3.11 Extension of Legender’s dual transformation

Further suppose that there is another set of m independent variables oy, ao...., am present in both F and
G.

= F=F (uy, Up,...., up, a1, 02,.... ,0lm)

G =G (v, Va,..., Vp, 01, O2,....,0lm)

]
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Then there should be some extra conditions for Legendre’s dual transformation to be satisfied. These

conditions are
F_-0G
80LJ- (30(1 ,

Consider G = G (v, Va,..., Vn, 04, O2,... ,0m)
= an:ui V; — F (ug, U, ..., un, 01, Olg,... ,0m) ..
=
From L.H.S. of (*), we have
- 0G
8G = ;aﬁv +le . (D
From R.H.S. of (*), we have
8G = Zu v, +Zv Su; iau ia 80 .(2)

i= i =1

Equating (1) and (2), we have

Zaes +Z—8a —Zu dv, +Zv du, Z is—ij

i OV, = =1 00
= Vi = a—: are satisfied provided
[
oG oG -oF
U= — and —=—
8Vi 8(11 5(11

3.12 Generalised potential for conservative system

For conservative forces, Potential function V =V (qi, 02,...,qn), therefore

dW = -6V

Also 8W = XQ; 6q; , where Q; are generalized forces.
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= D>Q;dq Z‘ZKS(;/J]&%

= Q=-—— ji=L2,...,n

3.13 Generalised potential for non-conservative system

Consider that the system is not conservative. Let U is Generalised potential, say it depends on

generalised velocities (qj) i.e. we consider the case when in place of ordinary potential V (g, t), there

exits a generalised potential U (g, t, ;) in terms of which the generalised forces Q; are defined by

dlou| au
Q= — , i=1,2,...,n
g dt{aq} &, :

[ L=T-V for conservative system, L = T—-U for non-conservative system]

Here U is called generalised potential or velocity dependent potential.

Here Lagrange’s equations are

d{oTr | or oJ | ouU .
—| = =Q;= — , j=1,2,...,n
dt 8qJ éqj dt 8qJ 8qj
= E_—(T U) ——(T U)=0
dt| o, o,
= E i —ﬂzo [~ L=T - U for non-conservative system]
dt\ og; ) aq;

3.14 Check Your Progress

1.  Define Holonomic and Non-Holonomic dynamical systems.
2. What are the Lagrange’s equations for a Holonomic dynamical system?

3. What are the generalized components of momentum?
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4. Write the realtion between Potential function (V) and generalized forces (Q;) for conservative

system of forces.

3.15 Summary

In this chapter we have discussed about generalized coordinates and generalized velocities,
Holonomic and Non-holonomic systems, constraints of motion, Lagrange’s equations for a
holonomic dynamical system, Lagrange’s equations for conservative forces and impulsive forces.
Further we have studied about Kinetic energy as a quadratic function of velocities, Donkin’s

theorem and Generalized potential for conservative and non-conservative forces.

3.16 Keywords

Generalized coordinates, Holonomic and Non-holonomic systems, Lagrange’s equations,

conservative, non-conservative and impulsive forces, generalized potential, Donkin’s theorem

3.17 Self-Assessment Test

1.  What are constraints? Classify the constraints with some examples.
2. Show that the generalized momentum increment is equal to the generalized impulsive force
associated with each generalized co-ordinate.

3. Set up the Lagrangian for a simple pendulum and hence obtain an equation describing its motion.

3.18 Answers to check your progress

1. Ifthe ‘n’ generalized co-ordinates (qi, 0z...., qn) Of a given dynamical system are such that we can
change only one of them say q; to (q; + 8¢:) without making any changes in the remaining (n—1)
co-ordinates, then the system is said to be Holonomic otherwise it is said to be Non-Holonomic
system.

2. Lagrange’s equations for a Holonomic dynamical system specified by n-generalised co-ordinates g;

(j=1,2,3,.....,n) are

]
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dfar_or o
dt\og; ) oq;

where T = K.E. of system at time tand Q; = generalized forces.

3. The quantity p; = a@_T ; G=1, 2,..., n) are called generalized components of momentum, where T
i

is the K.E. of system.

3.19 References/ Suggestive Readings
1.  F. Chorlton, A Text Book of Dynamics, CBS Publishers & Dist., New Delhi.

2.  F.Gantmacher, Lectures in Analytic Mechanics, MIR Publishers, Moscow

3. Louis N. Hand and Janet D. Finch, Analytical Mechanics, Cambridge University Press
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4.24 Self-Assessment Test

4.25 Answers to check your progress

4.26 References/ Suggestive Readings

4.0 Learning Objectives

In this chapter the reader will learn about Energy equation for conservative fields, Hamilton’s
variables, Hamilton’s canonical equations, Routh’s equations, Poisson’s Bracket, Poisson’s Identity,
Jacobi-Poisson Theorem, Hamilton’s Principle, Principle of least action, Poincare Cartan Integral

invariant, Whittaker’s equations and Jacobi’s equations.

4.1 Introduction

So far we have discussed about Lagrangian formulation and its application. In this lesson, we
assume the formal development of mechanics turning our attention to an alternative statement of the
structure of the theory known as Hamilton’s formulation. In Lagrangian formulation, the independent

variables are @; and ¢,, whereas in Hamiltonian formulation, the independent variables are the

generalized coordinates g; and the generalized momenta p; .

4.2 Energy equation for conservative fields

Prove that for a dynamical system
T + V = constant

where T =K.E.

V = P. E. or ordinary potential

Proof: Here V=V (qu, 02...., qn)
T=T@u%,.- > §;,9,.-4,; V)
L=T-V=L@ %2---an 4;,9,,----4,; 1)

If Lagrangian function L of the system does not explicitly depend upon time t, then
a_
ot

i.e. L = L(q, qj)forj=1,2,...,n

0

]
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The total time derivative of L is

oL .
d; ..(D
Z gﬁq,
We know that the Lagrange’s equation is given by
dioL| oL
—| = =0 j=1,2,....n ...(ID)
d{aq,} &
dL .| d| oL & oL . :
Now () = —=)> ;| —| =— | |+ ) —0; [using (I11)]
dt 12—1: J{dt(aqjﬂ =g
_wd|. oL
'Za%a
] q;
di <. oL
= —| > g, —-L|=0 (1)
dtLZ—l: 1 og; }
dH &, oL
—=0 , whereH= ——L
is a function called Hamiltonian
n
szquj—L -(A)
=
oL
[ — A =Pp; = generalized component of momentum]
i
Integrating (1), we have
..(2)

qu —L — L = constant
A

n n
Now qu qu _qu

J_

71
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=27 ..(3)
From (2) and (3), we have
2T — L = constant
= 2T — (T-V) = constant [~ L=T-V]
= T + V = constant.
Also from (A), H=T + V = constant.

. Total energy is T + V = H, when time t is explicitly absent.

4.3 Cyclic or Ignorable co-ordinates

Lagrangian function L is definedby L=T -V

If Lagrangian does not contain a co-ordinate explicitly, then that co-ordinate is called Ignorable or cyclic

co-ordinate.
Let L=L (w92, 90 4,95,--05»1)
Let g is absent in L, then i=0

k

Lagrange’s equation (equation of motion) corresponding to gx becomes

9($J—O=O :>$ = constant = pg
dt ogy K

4.4 Hamiltonian function and Hamiltonian variables

In Lagrangian formulation, independent variables are generalized co-ordinates and time. Also

generalised velocities appear explicitly in the formulation.

]
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L (g, Gk, 1)
Like this Lagrangian L (q;,q;, t), a new function is Hamiltonian H which is function of generalized co-

ordinates, generalized momenta and time, i.e.,

oL
H (g p; ), where pj= ==
]

Also we have shown that

H=Sp;q,-L i=1,2,...,n
j

This quantity is also known as Hamiltonian. The independent variables qi, 0z...., qn, P1, P2,-.., Pn, L are

known as Hamiltonian variables.

4.5 Hamilton’s Canonical equations of motion

Lagrange’s equations of motion are

dloL| oL
— =0, i=1,2,..., (K
dt[ﬁqJ a0; ! " )
Now H=H (g, pj t) (D)
n
H=>p; 4;-L(a;.q;.1) .2
=
The differential of H from (1),
oH oH oH
dH= ) —dq,+ ) —dp, +—dt ...(3)
Zaqj J Zapj J ot

From (2), we have

0 oL oL .. aL
dH = Y [p; dg; +¢;dp,]- > ——dqg; - > —=dg, - = dt

J_Zl[pj 4; +§;dp;] 2, g 2, % %

S R oL

=dH = § +§ §;dp; - § dq > ~—dg; ——=dt| - p;=

J_16q T &, =oq, ' ot { &,

oL oL
dH=Yg.d dg. — St (4
— Zq, p,— l_Zlan 9 - 4)
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From Lagrange’s equation (*), we have

(p)—— = Pj= ...(5)
aqj . aqj
Using (4) and (5), we get
P ar oL
dH = ) g,dp; - D _p, dg; ——dt ...(6)
j=1 j=1 ot
Comparing equations (3) and (6), we get
oH . . —oH :
—=q;, , p, = , Wwherej=1,2,...,n ..(7)
8pj J J aqj
and %:_—GL , ...(8)
o ot

The equation (7) is called Hamiltonian’s canonical equations of motion or Hamilton’s equations.

Result: - To show that if a given co-ordinate is cyclic in Lagrangian L, then it will also be cyclic in

Hamiltonian H.

If L is not containing qx , i.e., gk is cyclic, then % =0
k

So p, =0 = pg = constant
From equation (1), H (q;, p;, t)

= H (ql1 an-----, qk—la qk+la----7 qn, pla p2:---- pk—11 pk+1----pn, t)
If H is not containing t, i.e.

H=H (q;, py)
dH oH oH
Then E:Z_q‘ Z@pjp

Using equation (7) or Hamilton’s equation of motion, we have

< oH oH
_Zaqj p; zapj(aq J
dH

halLEFS = H = constant.
dt
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If the equations of transformation are not depending explicitly on time and if P.E. is velocity

independent, then H = E (total energy), which can also be seen from the expression as given under:
Let % =T (0w O2.-.... qn)
P.E, V=V (4 0z, dn)

1 N =2
KE, T= EZmiri
i=1

Now T =Z%ﬁqj
j

=L
13 - On i
= T2 2
i= =1 ]
= (quadratic function of ¢,,q,,....4,)

Then by using Euler’s theorem for Homogeneous function, we have
50,7 o
A

. . oL . oT
Now H=>p; qj—L:quaqu—L =quaqu—L:2T—L

= H=2T-(T-V)=T+V=E
= H=E

Example: - Write the Hamiltonian and Hamilton’s equation of motion for a particle in central force field
(planetary motion).

Solution: Let (r, 0) be the polar co-ordinates of a particle of mass ‘m” at any instant of time t.

P(r,0)

@)
Now L =T —V(r) , where V(r)=P.E.

]
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=N L_Em[r+rw]—vm (D
As (=10
g, =1,0
Pi = Pr, Po
oL ) oL 2
No = —=mr, =—=mro .2
WP P @

Then, H= ) p;d;—L=p, i+p, é—%m(r2+r262)+V(r)

1 1

=mi?+mr’f? —5 m(rz)—z mr26? + V(r) [using (2)]
:%maﬁw%6+vm 0
=  H=T+V
1 . 1
From (2), we have =—p, and  8=—7>5p,
m mr

Then from (3), we have

H= lm{(&j +r2( p"z) } + V()
2 m mr

= H= m {p, +&} +V(r) , which is the required Hamiltonian.
r

Hamilton’s equations of motion are,

q.:ﬁ p.:_aH
] apj’ J aqj

The two equations for ¢; are

. oH p, .
r:—:—:qr
op, m

o H py .
Similarly, 6=— =% =
y ape mrz qe
. ]
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Also two equations for p; are,

_—0H_ p; V()

Pr="5 mre  or
and pQ:%:O = Po = constant

4.6 Routh’s equations

Routh proposed for taking some of Lagrangian variables and some of Hamiltonian variables.
The Routh variables are the quantities

t, G, 0o, G, P
where j=1,2,.....k
and o=k+1,k+2,...,n
k is arbitrary fixed number less than n. Routh’s procedure involves cyclic and non-cyclic co-ordinates.
Suppose co-ordinates g1, Ja,...., qk (kK < n) are cyclic (or Ignorable). Then we want to find a function R,
called Routhian function such that it does not contain generalized velocities corresponding to cyclic co-
ordinates.

L =L (91, 92,----» dny G1,0---0p» 1)
If g1, Q2....., k are cyclic, then

L =L (Qk+1,---> Gny G3,05,---0p» 1)

so that
L oL oL . oL
dL = —dg;+ ) —dg;+—dt
j—% P jzl:aqj Lo
koL . L oL oL . oL
= dL- —d = —dg. + —d + —dt ...(1
[ 27 q'] 25, 0 2t g M

Routhian function R, in which velocities ¢, §,...4, corresponding to ignorable co-ordinates g1, go,....,
gk are eliminated, can be written as

R =R (Ok+1, Ok+2,- -+ ny Qysse--Ans t)
so that
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0, AR "R .. AR
dR= > g+ > g+ Tt )
j-%laqj . j:k+1aqj .

ot
Further we can also define Routhian function as

k
R=L->4;p o (®)
j=1

k Kk
We want to remove » g; or »_¢; from L to get R.
1 =i

Now from (*), we have

K K
dR=dL - 3 g; dp; - p;dg,
i1 =

KoL . &, oL
T S T S {p_}
;mj szlj J Lo
& oL - oL ,. oL K :
= dR = —dq.+ > —dg. +—dt— ) ¢q.dp. [using (1)] ...(3)
j;laqj : j:k+laqj boat 1'2:1:J :
Then comparing (2) and (3) by equating the coefficients of varied quantities as they are independent, we
get
GLzaR, a_":‘a,R ,  j=k+1Lk+2,...n .4
R TIA TRC VR
oL oR
and —=—
ot ot

Put (4) in Lagrangian’s equations,

n
zﬂ(a__tj_é N
7| dtl o ) o

we get,

L|d|{oR| OR
— | — |—=—1=0
j%idt{aqj 5‘%}
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dt\ oa; | oq;

These are (n—k) 2" order equations known as Routh’s equations.

or ﬂ(aRJ R _0 | j=k+1....n

4.7 Poisson’s Bracket

Let A and B are two arbitrary functions of a set of canonical variables (or conjugate variables) qi, qz,....,
Ons P1, P2,--.., Pn , then Poisson’s Bracket of A and B is defined as

OA 0B OA 0B
[A1 B] = -
qp ;(aqj ap; P, 8qu

If F is a dynamical variable, i.e.,
F=F(q; pj, 1), then

dF dF oF oF . oF
— Pis i +— .1
dt (JJ)Z[anJapJ j@t (1
Using Hamilton’s canonical equations, we have
g M=o
J apj ! J aqj

.. From (1), we have

d_F_Z£8F oH oF aHJ oF

dt <o, dp; op;oq; ) ot
dF oF
—=[F H],, +—=
dt [F Hlg, ot
If F is not depending explicitly on t, then
F_g
ot

dF oF oH oOF oH
so . - =[F, H] ¢
dt Z[aqj  JRe s aqj] b
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4.7.1 Some basic properties of Poisson’s Bracket
1 [X, Y]qp =LY, Xlqp
2 [X, X] =
3. X, Y+Z]=[X Y]+[X Z]
4 [X,YZ] =Y [X,Z] + Z[X, Y]

Solution: -

|. By definition, we have [X, Y], = Z( OX oY _ X ay}

aq; op;  ap; ag;

oY oX 0dY oX
Now [Y,X]q,pzz{aq_ép__ép_aq)
J ] ] ]

Z oX oY oX oY
aq, 8p1 8pj aqj

= [Y, Xlgp= —[X, Y]qp

oX oX oX oX
0 [XX]gp= Y| 22 _A2A 1=
v ZJ: aqj op;  p; g

Also [X,Clqp= - =0
v ZJ: aq; dp;  Op; 4N

XY+ aXaY+2)
N X Y+2Z]e,= S| 2Ar+s) or
PO Ha Jz(aqj d; 0Py A ]

oY dZ| oX|oY oZ
HaEa aaa
aq; | op; apj op;l aq;  aq;

X oY X oY oX 67 oX oz
= X, Y+Z]q,= — + =T =
P ;{aqj pj P 5‘%} Z(aqj Mj D 5%)

=[X, Y]gp + [X, Z] q,p
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oX a(YZ) oX a(Yz
IV. [x,YZ]q,p:Z[éq_ gp,)_ap_ éq)J
j i j ] ]

_ 5| X[y 2 V) 2X(0V 2
T od oy dpy) Op od; ag,

|y axazl] s oxor axov
T\ 00 0P Op; AN T\ 0 Op;  Op; 04

=Y [X,Zlqp+Z[X Ylgp

Also
(i) [di, Gjlqp =0
(i) Ipi pilap=0

L =]
(“I) [qi’ pj]q,p = 6” = {O, | ;tj
Solution:-
| _ 5| oui %95 _ag, 6%}
(i) [dqlep= { ' —— (1)
b= 20 20 o0, 2y
Because q; or gj is not function of py, so
%: % =0
OPk OPk

Then (1) =  [gi qlq,p = 0.

y dp, P; op, 81011

(i) [pipilap= { vt
s ;aqkapk Py O

As pi, pj is not a function of g ,

Pi_g  Pi_g
&,

O
So  [piplgp=0

I 5ij
N i Pilg.p = -
(iii) ow [0, Pilq.p Zk:[aqk Pr Pk Ay
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%Qi@i——
- Toon-Tacn

1 i=]
= [qi’ pj]Q:p = 6'] = {0 |¢J

4.7.2 Some other properties of Poisson Bracket
If [¢, v] be the Poisson Bracket of ¢ & v, then

W Sp- %wHﬁ a—‘”}

ot a
d [ dg dy
@  glvl= dt W} ["5 E}
Solution: (1) —[¢ v]= {Z(%Z_Z_g_z, ng.ﬂ

el s
-l EHEEIE) S
el ol alelae el

(2) Similarly, we can prove
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%[cﬁ, ] =[%,w}r[¢, %—ﬂ

4.8 Hamilton’s equations of motion in Poisson’s Bracket

If H — Hamiltonian, then

oH .
, H = — =
[0, Hlg.p o q

-oH
and [p, H]qp= H:p

Proof: From Hamilton’s equations, we have

—H_,  H_

p’ q """"" (1)
% e
agj oH  oq; oH
Now [g;, H] = {_J___J_}
: Z.: ag; dp; - Op; O
oH aq;
=S H )
= [qJ ] ZI: ji api |: 8pi :|
oH . i
= =4q. 1
o qQ [using (1)]
oH .
) H = ~ =
= [q ]q,p ap q
Similarly,  [pj, H] = p;
T
Hence [p, Hlgp = W:p
Note: If [p;, H] =0, then
— pjzo = pj = constant

4.9 Jacobi’s Identity on Poisson Brackets (Poisson’s Identity)

If X, Y, Z are functions of g and p only, then
X 1Y, ZIT+ Y [Z, XTI+ 21X, YIT =0

]
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Proof: [X, [Y, ZI] + [, [Z, X]] = [X, [Y, ZI] - [Y, [X, Z]]

oY oZ oY oZ oX 0Z oX oZ
=X, - -1, - (1
{ Z(éqj 6pj apj quﬂ l: le[aql 8pi 8pj anJ:l .

oY oz _E oY oZ

Let )
50!, 5p, ap, aqj
XL _ X L _
Tog; 0p; 7P Y

S~ (1) =X LY, Z0] - 1Y, DX Z])
= [X, E-F] - [Y, G-H]

= [X, E] - [X, F] - [Y, G] + [Y, H] .(2)
oY oZ oY oz
Let
R, (Zan{JZGpJ
E= E1 E2

Similarly, F=F1F, ,G=G; G, ,H=H; H;
RHS of (2) becomes
[X,E]-[X, F]-[Y,G] +[Y,H] =[X, E1 EJ] +[Y, Hi Hy] — [X, FiF2] - [Y, G1G2]
=[X,E1] E2 + [X, E2] E1 — [X, F1] F2 — [X, F2] F1 = [Y, G4] G2
—[Y, Gy] G1 +[Y, Hi] H2 + [Y, Ho] Hy

arsoryes e E{ X2 | Ix z(gpv z|
] J J

oX oZ oX oZ
{ 7\ 00 Op; apj 6q
Using the property [X, E1 E;] = [X, E1] Ez + [X, Ez] E1, we have

RHS of (2) is = {x Z‘W} aapz {x Zgﬂ Sc:(
J J
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YV 7 | <oy
XY Y E (Y= YD
Zapj} aq; { Zaqj} p;
i X | oz 07 | < oX
_ly, 32 Yy Y% |y or
bR DR
vy X s |y y2|gax
i '~ op, an o N,

/ \ L

: A
RHS of (2) is =
Zj:{ o]

| aX Y} {x av} Lz [ax Y}{x a_v}
op; ap; |) o (oa; o0
.y av{x az}_av[x az}_ax{Y az}ax{Y az}

|00 o] dpg| ea; ] oa; o] opy|

Using the identity,
on{Z ]
ot ot ot
Then, we find that R.H.S. of equation (3) reduces to
z az a[x Y] oZ o[X,Y]
op; 0p,— aq;
+ 0 (All other terms are cancelled)
B —Z{ oz oX.Y] éz aX, Y]}
7 op; opy gy
—[Z, [X, Y]]

or X [Y,z2ll+1[Y, [Z X]]=~[Z [X YII
= XY, Z+IY,[Z X1 +[Z,[X, Y]] =0

..(3)

Particular Case

Let Z = H, then
X, [Y, H]] + LY, [H, X]T + [H, [X, Y]] =0

]
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Suppose X and Y both are constants of motion, then
[X,H] =0, [Y,H]=0
Then Jacobi’s identity gives
[H, X Y]]=0
= [X, Y] is also a constant of Motion. Hence Poisson’s Bracket of two constants of Motion is itself

a constant of Motion.

4.10 Poisson’s Theorem

The total time rate of evolution of any dynamical variable F (p, g, t) is given by

dF oF
—=—+[F,H
gt o
Solution: ((jj_lt:(p,q,t):%+ oF . oF . :I

o Floq; " apy
_ O, y| oF o aFaH}

+ J—
ot o) op;  op; A

dF _ oF
WA + [F, H] (D)

) ) F
Note: If F is constant of motion, then % =0
Then from Poisson’s theorem, we have

oF
= +[F,H]=0
ot [F. H]

Further if F does not contain time explicitly, then % =0

= [F,H]=0

This is the required condition for a dynamical variable to be a constant of motion.

4.11 Jacobi-Poisson Theorem (or Poisson’s Second theorem)
If u and v are any two constants of motion of any given Holonomic dynamical system, then their Poisson

bracket [u, v] is also a constant of motion.
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Proof: - We consider %[u,v]za [u, v] + [[u, v], H] (D)
Using the following results,
T I Y
a[u,v]_[at,v}[u, at} ...(2)
and [u, [v, wW]] + [v, [w, u]] + [w, [u,Vv]] =0 ...3)
d _|ou ov
Q= a[u,v]—[E,V}[U,E}[[U,V]H] ..(d

Putw =H in (3), we get
[Hv [U, V]] = - [U, [V, H]] - [V’ [H’ U]]
= —[[v, H], u] = [[H, u], v] = [[u, V], H] ...(5)

From (4) and (5), we get

%[u,v]z[%ttj,v}{m %: — [[v, H], u] - [[H, u], v]
- :%ltj,v}:U, %} +[u, [v, HIT + [[u, H], V]
- :%+[U,H],V}+|:U,%+[V1H]:|

du dv )
Because a and — both are zero as u and v were constants of motion.

6) = %[u,v] =0

= The Poisson bracket [u, v] is also a constant of motion.

4.12 Hamilton’s Principle

]
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Statement: During the motion of a conservative holonomic dynamical system over a fixed time interval,
the time-integral over that interval of the Lagrangian function (i.e. difference between the kinetic and
potential energies) is stationary.

In other words, this principle states that for a conservative holonomic dynamical system, its motion from

time t, to time t, is such that the line integral (known as action or action integral)

t
with L=T-V has a stationary value for the actual path of the motion. The quantity S is known as
Hamilton’s principal function. The principle may be expressed as
t
oS =8j. Ldt =0 ,where & isthe variation symbol.
t
4.13 Derivation of Hamilton’s Principle from Lagrange’s equation

We know that Lagrange’s equations are

dfoL) oL
G2 | j=1,2...n ()
dt(aqj] ag;
t t
Now 65 = 8] L dt =[sL(q,, 4,)ct

t 4

= STL dt=T{Z(%8q1+%6qjj}dt

4 ] j

f{z—&l }d”TZ%qu dit

1 J

e gfaL
- dq dt
IZ {aqj @

t

= fzgq" 3q dt+Z—8

t

Since, there is no coordinate variation at the end points, we have

qu‘tl :qu‘tz -
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t t

= SfL dt:fO oq; dt [Using (1)]
1 1
=0

t
= JZL dt = stationary, where t, , t, are fixedand L=T-V
b

4.14 Derivation of Lagrange’s equations from Hamilton’s principle
t
We are given, & det: 0

g

As &q; are arbitrary and independent of each other, so its coefficients should be zero separately. So we

el -

d{ oL | oL
= —| — |-——=0 for j=1,2,....,n
dt[aqj ag;

have

4.15 Principle of Least action
The action of a dynamical system over an interval t; <t <t is defined as

t
A= JZZT dt ,

g
where T = K.E.
This principle states that the variation of action along the actual path between given time interval is least,

ie.

t
8J22T dt=0 ..(D)
t
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Now we know that T + V = E (constant), ...(2)
where V=PE., T=KE., L=T-V
By Hamilton’s principle, we have

t t
JZSL dt=0 or fS(T—V)dt:O

t1 41

t
= fa(T_E+T)dt:O
t

= T[S(ZT) ~5E] dt=0

1

t
= fS(ZT) dt=0 [using (2), E =constant, .. 8E =0]
t

t
= 6f2T dt=0
t

4.16 Distinction between Hamilton’s Principle and Principle of least

action

4.17 Hamilton’s principle, i.e. S = 0 is applicable when the time interval (t, — t;) in passing from one
configuration to the other is prescribed whereas the principle of least action i.e. 3A = 0 is applicable
when the total energy of system in passing from one configuration to other is prescribed and the time

interval is in no way restricted.

4.18 Poincare - Cartan Integral Invariant

We derive formula for W in the general case when the initial and terminal instant of time, just like

initial and terminal co-ordinates are not fixed but are functions of a parameter a.

t
W(a) = fL[tl qi(t, o), qj(t, a)]dt

t7

]
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Let  t;=ty(a), t ="ty (c)
q; =qj(a) att=1t

qf =qf (o) att=t,

t t
Now oW =39 ,fL dt=L,dt, — Ly oty + IZ Q?Sq, +i6qj dt
t1 ty i aqj an
Integrating by parts,

Then W =Ly 3t + Y pi[80;]e,, —Ly 3t~ P} [3a;],
J J

Tl oL df e
+ — ——| —119q. dt (1
{Ezj:{aqj dt(aqjﬂ ! v
Now g = gj(t, @)
(t, 3\
[qu]t:tl :{W} 8ot
0 ) (
and  [80;]., ={£qj(t,a)} da ..(2)
t=t, )

On the other hand, for the variation of terminal co-ordinates

5 =0 [t(a), o

(t,
SqJ.Z:qJ?Bt2+[aqj( “)} S0
a t=t,
= 3q} =[30;], +67 8, [Using (2)]
= [qu]t:tz :qug _qu ot, .(3)
Similarly, [8q;].,, = 8q; —4; &t ..(4)

Put (3) and (4) in (1), we get
SW = Lo 8t + D _pi(3a7 —¢f dt,) — L 8ty
j
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- Zp (895 —¢; 8t1)+f2

t

| oL d[@Lﬂ
*_ = 5q; dt (5
ijz{aqj dt| oq;

2
n
where {ZPJSQJ—H&} =P 80§ —H,8t, — > pj 8q] +Hi 3t
j j

L A

2
=N SW:{ijqu—HSt} +
=1

1

Now we know that — H = L—ijqj
j

—-H;=L; - ijj' q:jL
J

and -Hy=L, - ijijz
J

In the special case for any «, the path is extremum, the integral on R.H.S. of equation (5) is equal to zero

and formula for variation of W takes the form
2

{ij qu—Hét} ...(6)
=L

1

Integrating, we get

n
W= j{ijqu —H6t:| dt
=1
which is known as Poincare Cartan Integral Invariant.

4.19 Whittaker’s Equations

We consider a generalised conservative system, i.e. an arbitrary system for which the function H is not
explicitly dependent on time. For it, we have
H (qj, p;) = Eo (constant) ..(D)
where j=1,2,....,n
(2n — dimensional phase space in which g;, pjare coordinates)

Then basic integral invariant | will becomes

]
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1= [(Xp; oa;-Hat)

n
= = J-ij 60 [ for a conservative system, 5t = 0] ..(2)
i

Solving (1) for one of the momenta, for example p; (say), we have

p1=—Ki(qs, 92,...., qn, P2,---, Pn, Eo) ...(3)

Put the expression obtained in (2) in place of py, we get

I = J‘{ij 0q; + P, Sq&
=2
== ngpj 5q, - K, Sql} @

But this integral invariant (4) again has the form of Poincare — Cartan integral if it is assumed that the
basic co-ordinate and momenta are quantities g; & p; (j = 2, 3,..., n) and variable g plays the role of time
variable (and in place of H, we have function K;). Therefore the motion of a generalised conservative
system should satisfy the following Hamilton’s system of differential equations (2n — 2).

dqg. — dp.
qj:&:%’ and ﬁ:ﬁ

;1523 ..(5)
dt  op; aq; dqg,

The equations (5) were obtained by Whittaker and are known as Whittaker’s equations.

4.20 Jacobi’s equations

Integrating the system of Whittaker’s equations, we find q; & p; (j =2, 3,...., n) as functions of variables
g: and (2n —2) arbitrary constants Cy, C,...., Con_2. Moreover, the integrals of Whittaker’s equations will

contain an arbitrary constant Eo , i.e., they will be of the form
;= ¢J (qla Eo, Cl, C2.. .. C2n—2)
(G=2,3,...,n)

pJ = \VJ (qlv EO, Cll C2~- .. C2n—2) . (6)
Putting expression (6) in (3), we find
p1 = w1 (01, Eo, C1, Co,....., Con2) (7
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From equation

% = ﬁ — dt= dql
dt  op, ( H j
op,

= t=] A%, s .(8)

where all the variables in partial derivative (%} are expressed in terms of g; with the help of (6) and
1

(7). The Hamiltonian system of Whittaker’s equations (5) may be replaced by an equivalent system of
equations of the Lagrangian type:

d|oP| oP
- |- =0, j=2,3,...,n ...(9)
da, {aqj] ag;
These are (n —1) second order equations where
q'_ :%
' do,

and the function P (analogous to Lagrangian function) is connected with the function K, (analogous of

Hamiltonian function) by the equation

P=P QL Gz s Gy Gyee )

n
pP= ij q;—K; ...(10)
=
The momenta p; must be replaced by their expression in terms of
. d , d
qzzi, ...... , gn = %n
da, da,

which may be obtained from first (n—1) equation (5).
From (3) and (10), we have

P= 3P 0Py = P
=2

ql i=1
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= P= i (L+H)
01
For conservative system,
L=T-V, H=T+V
= L+H=2T

Then P = E

dy

n
and KE, T= 1 Zaik qiqk
2¢a
= 07 G (G Ugreeeee b Qoo A7)

where

n

! ' 1 "t
G (91, 92,-- ., qn, 0 P qn):— Zaikqiqk

2 i,k=1
From (1) and (13), we obtain
H=E
and  T=G(?

. T H-V
R (R e
, . E-V
S e

_ 2T _26iG _
ST}

=N P=2G /ﬂ
G

=2 JGE-V)

and P 2Gq,

MAL-513

(1)

.(12)

..(13)

..(14)

...(15)

[from (15)]

...(16)

Differential equation (9) in which function P is of the form (16) and which belong to ordinary

conservative system are called Jacobi’s equations.
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4.21 Theorem of Lee - Hwa - Chung

If 1= J.i[Ai (Qk, Pk, 1) 80; + Bi (t, Ak, Px) Spil
i

is a universal relative integral invariant, then I’ = ¢ 15, where c is a constant and I, is Poincare integral.
For n=1,

I = J'(Aéq +Bdp)

= I':préq:cll

{ll =Ii§:][pi Sqi]}

and I} = Ip&q — H &t from Poincare Cartan integral.

4.22 Check Your Progress

What do you understand by ignorable coordinates?
Define the Hamiltonian of a system.

What are the Hamilton’s canonical equations?
State principle of least action.

Define Jacobi’s identity.

Define the Routhian or Routh function.

N oo o s~ w D e

What do you mean by Poisson brackets?

4.23 Summary

In this chapter we have discussed about Energy equation for conservative fields, Hamilton’s
variables, Hamilton’s canonical equations and Routh’s equations. Further we have studied about
Poisson’s Bracket, Poisson’s Identity, Jacobi-Poisson Theorem, Hamilton’s Principle, Principle of

least action, Poincare Cartan Integral invariant, Whittaker’s equations and Jacobi’s equations.

4.24 Keywords

]
DDE, GJUS&T, Hisar 96 |



Mechanics

MAL-513

Energy equation, Hamilton’s canonical equations, Routh’s equations, Poisson’s Bracket,

Hamilton’s Principle, Jacobi’s equations

4.25 Self-Assessment Test

Write the Hamiltonian and Hamilton’s canonical equations of motion for simple pendulum.

What is Hamilton’s principle? Derive Lagrange’s equations of motion from it for a conservative
system.

State and derive principle of least action. Also explain the difference between this principle and

Hamilton’s principle.

4.26 Answers to check your progress

1.

If Lagrangian does not contain a co-ordinate explicitly, then that co-ordinate is called Ignorable or
cyclic co-ordinate.

The Hamiltonian of a system is defined to be the sum of the kinetic and potential energies
expressed as a function of positions and their conjugate momenta.

The Hamilton’s canonical equations are

oH . . —oH

5_[31- =q; ,» P :Wj )

The Principle of Least Action, states that the variation of action along the actual path between

wherej=1,2,...,n

given time interval is least, i.e., SA =0,

where the action (A) of a dynamical system over an interval t; <t <t; is defined as

t
A= fZT dt ; T=K.E.
t1

If X, Y, Z are functions of g and p only, then
X, LY, 21+ IY, [Z, XTT + [Z, X, YIT =0
The Routhian or Routh function usually denoted by R is defined as

K
R=L->4;p,
=i
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7. If A and B are two arbitrary functions of a set of canonical variables (or conjugate variables) qu,

02,--.-» qny P1, P2,----, Pn » then Poisson’s Bracket of A and B is defined as

[A Blgp= D,

j

(GA B A aBj
oq; op;  op; o
4.27 References/ Suggestive Readings

1.  F. Chorlton, A Text Book of Dynamics, CBS Publishers & Dist., New Delhi.
2.  F.Gantmacher, Lectures in Analytic Mechanics, MIR Publishers, Moscow
3. Louis N. Hand and Janet D. Finch, Analytical Mechanics, Cambridge University Press

]
DDE, GJUS&T, Hisar 98 |



Mechanics MAL-513
.| ]
Chapter -5
Canonical Transformations

Structure:

5.0 Learning Objectives
5.1 Introduction

5.2 Point transformation

5.3
5.4
5.5
5.6

5.7

5.8

5.9

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17

5.0

Canonical transformation

Hamilton — Jacobi Equation

Jacobi’s Theorem

Method of separation of variables

5.6.1  Examples based on method of separation of variables
Lagrange’s Bracket

Properties of Lagrange’s Bracket

Invariance of Poisson’s Bracket under Canonical transformation
Poincare integral Invariant

Invariance of Lagrange’s bracket under Canonical transformation
Check Your Progress

Summary

Keywords

Self-Assessment Test

Answers to check your progress

References/ Suggestive Readings

Learning Objectives

In this chapter the reader will learn about Canonical transformations, Method of separation of

variables, Lagrange’s Brackets, Invariance of Lagrange brackets and Poisson brackets under canonical

transformations.

5.1

Introduction

]
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The Hamiltonian formulation if applied in a straightforward way, usually does not decrease the
difficulty of solving any given problem in mechanics; we get almost the same differential equations as
are provided by the Lagrangian procedure. The advantages of the Hamiltanian formation lie not in its use
as a calculation tool, but rather in the deeper insight it affords into the formal structure of mechanics.

We first derive a specific procedure for tranforming one set of variables into some other set which may
be more suitable.

In dealing with a given dynamical system defined physically, we are free to choose whatever generalised
coordinates we like. The general dynamical theory is invariant under transformations q; — Q; by which
we understand a set of n variable expressing one set of n generalised co-ordinates g; in term of another
set Q;. Invariant means that any general statement in dynamical theory is true no matter which system of
coordinates is used.

In Hamiltonian formulation, we can make a transformation of the independent coordinates g;, pi to a new
set Qj, P;i with equations of transformation

Qi=Qi (g p, 1), Pi=Pi(q,p, t)

Here we will be taking transformations which in the new coordinates Q, P are canonical.

5.2 Point transformation
Qi=Qj(g; t)

Transformation of configuration space is known as point transformation.
5.3 Canonical transformation
old variables — new set of variable
95, P = Qj, Pj
Here  Q;=Qj(aj pj, 1)
Pj = P;(q;, pi, 1) (D)
If the transformation are such that the Hamilton’s canonical equations

éH —oH

e

preserve their form in the new variables, i.e.

d;

DDE, GJUS&T, Hisar 100 |



Mechanics MAL-513

- oK . —0K
oP; 0Q;
K being Hamiltonian in the new variable, then transformations are said to be Canonical
Transformation.
Also if H= ij d; —L in old variable, then in new variable,
K=>PQ;-L
where L' = new Lagrangian
Now E[i}i:o
dt{ 6Q; ) Q;
i.e. Lagrange’s equations are covariant w.r.t. point transformation and if we define P; as
Q9
iT T A
Q;

: oP,

. —oK(Q;,P;,t
and szM
xRQj

t
Hamilton’s principle in old variable, 6 fL dt=0
g

= S.f [> pya;-H@p.H]dt=0 [+ L=3p¢~H] ..(2)

1

and in new variable,

atf [>°P, @, -K(@QP.B)]dt=0 e

Stj{(Zpiqi_H)_(ZPij_K)}dt:O (D)

Let F=F(q,pt)
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5] %F(q,p,t) =3[F(ap. I}

ty

= oF
t2
= Eﬁq oF p
J J apj J "
R
= —0q;| +—9dp;| =0
aqj J t ap] J t

[Since the variation in g; and p; at end point vanish]

L (8= ST{(ijqj H)- (PO, - K)——}dt 0
= (ijq,- —H)—(ZP,- Q- K):C(ij_lt: ...(5)

In (5), F is considered to be function of (4n + 1) variables i.e. g;, p;, Q;, P;, t.

But two sets of variables are connected by 2n transformation equation (1) and thus out of 4n variables
besides t, only 2n are independent.

Thus F can be fuinction of F; (g, Q, t), F2 (g, P, t), F3 (p, Q, t), or F4 (p, P, t)

So transformation relation can be derived by the knowledge of function F. Therefore it is known as
Generating Function.

Let Fi=Fi(q,Q,1)

b6, -H=YP,0,-K+ 51 @QY 46)

dFl oF, .
and ( Q,t) = Z[ ) g + ) QJ 8t (7
.. From (6) and (7), we get

oF, - OF
2P 8, -H=2.PQ, K+Z—q, "l Aty

J
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oF; } [ oF,; } oF,
or ——p; |19;+ ) |Pi+— |Q: +H-K+—==0 ...(8)
,Z{aqj [P, 2 o

Since g; and Q; are to be considered as independent variables, equation (8) holds if the coefficients of g;

and Q; separately vanish, i.e.

R b
and Pj= —w ...(10)
Q;
and szw 3D

Equation (11) gives relation between old and new Hamiltonian. Solving (9), we an find  Q; = Q; (q;, p;,
t) which when put in (10) gives

P = P;j (05, pj, 1) ...(12)
Equations (12) are desired canonical transformation.

5.4 Hamilton — Jacobi Equation

If the new Hamiltonian vanish, i.e., K =0, then
Qj = o (constant)
Pj = B; (constant)

Also H+%:K:0
ot

oF;
= H@E@p)+ =
(@5, pj, ) ot

a; ot

Using (9, H[qj,% tjﬁ:o
This partial differential equation together with equation (9) is known as Hamilton-Jacobi Equation.

Generating function is also called characteristic function.

Let F; is replaced by S, then
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oS oS oS
—+H|q,,9,,..-9,, , ...(9)
ot ( ? o, ' o,

The solution S to above equation is called Hamilton principle function or characteristic function.
Equation (9) is first order non-linear partial differential equation in (n + 1) independent variables (t, qs,
J2,...,qn) and one dependent variables S. So Therefore, there will be (n + 1) arbitrary constants out of
which one would be simply an additive constant and remaining n arbitrary constants may appear as
arguments of S so that complete solution has the form

S=S(q,t,a) +A ...(10)

where o = a4, ap,..., o, are n constants and A is additive constant.

Jacobi proved a theorem known as Jacobi’s theorem that the system would volve in such a way that the
derivatives of S w.r.t. a’s remain constant in time and we write

§=Bi (constant) , (i=1,2,....,n)
o,

o = Ist integrals of motion

Bi = lInd integrals of motion

5.5 Jacobi’s Theorem

If S(t, g, o) is some complete integral of Hamilton Jacobi equation (9) , then the final equations of
motion of a holonomic system with the given function H may be written in the form

oS 0S
—=p, and— =p;
oq P ad =P

where Bi, o are arbitrary constants

Proof: Given the complete integral for S given by (10), we wish to prove

0S
a_ai_Bi

Consider
EIEARSEIE N
dt a(xi ot a(li ﬁqj 80Li )
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_ 0 (0S 0| 0S |.
NN
Q; ot 8(1i 8qj

_ 0| @Z _ 0°S . .
_GTL[ H(t’qj’aq. p’ﬂ+—8ai6qjq‘ [using (9)]

J

d(asJ_—aHaq,- oH &S %S

= — + of
dt{ oo, ) 0q; ooy 5 S | 0ou0q;  dod; %
o
e e o e o &, _
ince g;’s and o;’s are independent, we get — =0
d( &S oH . | 8°S
—|—|=|-——=—+(q; |——— =0 o
. o ) . . oH
Now using Hamilton’s equation of motion, (; = a
i
From (*), we have
dt 5()Li
:>§—S = constant = 3; , i=12,...,n)

[

Remark: Consider total time derivative of S (g, a;, t)
ds oS | oS. oS
dt Zéqj qJ z a]

a(Xj ot
But we know that &; =0 since o are constant.

Also é:pj and H + %:0 gives %z—H,sowe have

j
ds .
E=ijq,——H=L

= S= IL dt + constant
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The expression differs from Hamilton’s principle in a constant show that this time integral is ofindefinite

form. Thus the same integral when indefinite form shapes the Hamilton’s principle.

5.6 Method of separation of variables

. . H . . .
For a generalised conservative system, % =0. Then Hamilton’s Jacobi equation has the form

§+H qi,ﬁ =0
ot aq;

If Hamiltonian does not explicitly contain time, one can linearly decouple time from rest of variables in

S and we write

S (qu q27 """"" ani t) = Sl(t) + V]_ (q]_, q2, ...... qn)
and its complete solution is of the form

S=—-Et+V (Q1. 02,..-+ qns A1,..., Oln-1, E)

[As S = function of t + function of q ]

5.6.1 Examples based on Method of separation of variables

Example 1: - Write Hamiltonian for one-dimensional harmonic oscillator of mass m and solve
Hamilton-Jacobi equation for the same.

Solution: - Let q be the position co-ordinates of harmonic oscillator, then q is its velocity and

1 .,
KE., T=—-m
2 q

PE., V= % kq? [ k is some constant]
Lagrangian
1 .-, 1 5
L=T-V=-mg*--k
2 k 2 k

The momentum is

p=T=mq
o
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i P
= -

Then, the Hamiltonian is
H= Zpi q;—-L

52

(1 1
=0 q—| =ma? —=ka?
Pq (qu qu

_p 1 _p* 1
=p P _ZmE 4k
P 2 me T2
2
Hle——l—lqu
2 2

Also for a conservative system,

2

_ _1opt L o 1P o
Total Energy =P.E. + K.E. = =m-—-+=kg“ ==| =—+kqg* | = Hamiltonian
2 m? 2 2| m

2 k 2
= H(q,p)= §—m+% ..(1)

: oS .
Replacing p by — inH,
N

2 2
H CL@ :i @ +ki.
&q) 2mlaq) 2

Then from, % +H (q. @j =0, we get

e

2 2
8_S+i a_S +ki =0 (2)
a 2mlaq) 2

We separate variables
S()=V(Q) +S: (1)
= a_s = ﬁ & a_s = d_\/
ot dt aq dg
Putting in (2), we get

]
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2 2
1|dV +kq +d—51=0
2 dt

2m|dq| 2
ds,_ -1(dv)_kg®
dt  2m{ dq 2
L.H.S. is function of t only and R.H.S. is function of q only.

But it is possible only when each side is equal to a constant (-E) (say).

ds, .

Let —L=-F

e it (1)
1 (dv) 1

and —|—| +=kg*=E ...(i1)
2m{ dq 2

Now (i) = S; = — Et + constant

2
and (i) = (‘3—\9 :Zm(E—%quj
dv 1
NV _ om|E-Zke?
dq J m( 2 qj

1
- V()= _[\/ﬁ (E—%qujqu+constant

Therefore, complete integral is
S(g,t) =S (t) +V(a)

1

= S(q,t)=—Et+ J'\/Zm (E—%qujqu+constant

Further by Jacobi’s theorem,

Here 0y = E
oS oS
o, T Eh

]
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S _ . 2m dg
E——=Kkag?
[ 2 q)
()
k
=—t+ Jm a9 {:J‘#dx:sin‘15
a’—x* a

= J%(t+ﬁl)=sinl(q JQ
= q/K - N% (t+Bl)}
= qEy = 20 s N% (t+B1)}

The constants B, E can be found from initial conditions.
The momentum is given by
o= 05 _A8.(0+V(@)
aq o

1
1 2

E —=kg?
( qu

1

(2E—kg? )

S B o

= JmI2E-kq?),

:
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which can be expressed as a function of t if we put g = q(t).

Example 2: - Central force problem in Polar co-ordinates (r, 0)

Here K.E,
1 . -\2 T
T:Em[r2+(re)] g
P(r, 6)
P.E., V(r)
ThenL=T-V S 0
L =%m[f2+r262]—V(r) (D)
oL L, . .
Now pr= = [Gi=1, G, =F,92=0, 9, =6, pj = pr, Po]
m
- oL _ 20 N pe
Also py= 6—é—mr 0 = 0= pow ()
Therefore, Hamiltonian is
H= ZpiQi -L
= prr+p60—%m (r2+ r262j+V(r) [using (1)]

mp?  mr’p,’ .
=p, p—n;+pe n??? — 2n$rr2 — ZmEre“ +V(r) [using (2) and (3)]

2 2 2 2
= &_i_p_ﬁz_&__pe > +V(r)
m mr- 2m 2mr

l 2
=§[p—rﬁ+%}+\/(f)
_ 1 5. P
- pr+r2 +V(r)

H — J equation is

]
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8—S+H=0
ot

2 2
6_S+i[(6_8j +i2(8_8j }+ V(r)=0
ot 2mi\ or re\ o0
Using the Method of separation of variable, we have
S=Si(t) + R(r) + ®(0) ()

dS, _ -1/(dR)" 1 (do)")_
Then, E_Zm{( drj +r2(d6j} V(r) .....(5)

L.H.S. of (5) is function of t and R.H.S. is function of r & 6 but not of t, therefore it is not possible only

where each is equal to constant = — E (say).

= %:—E = S;(t) = - Et + constant ....(6)
- (d—Rj2+i(d2j2 ~-V()=-E (7)
2m|dr ) r?do B
—r?(drRY* ;o 1 (doY
—| = | =r°V E=—|—
= 2m ( drj rVO-r Zm(de) ®

L.H.S of (8) is function of r only and R.H.S is function of 6 only,

h2
So each = constant = —(Sa
o0 S

do

Thus — =h o9
us @ 9)
= @(0)=h0 -+ constant ...(10)

Then equation (8) gives
—r’(drRY" , h? .
%(Wj r2V(r)+Er o [Using (9)]

= (Z—TT :[Zm(E—V)—l:—j}
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=N ?j—lf = [Zm(E—V)—th‘ZF

= R = J-\/Zm (E—V)—h?r? dr+ constant (1)

Therefore, complete solution is
S=5;+R+®

— S =—Et+ho+ _[\/Zm(E—V)—hzr’2 dr + constant , is required solution.

Now, @ = constant
oE

- —t+j mdr

> :B1(Sa )
\/Zm(E—V)—?Z '

The other equation is

S_ constant
ch

(— 2hr‘2)dr

1 =B,(sa
2 [Zm(E_V)—hzr*ZE =B, (say)

=0=

Example: - When a particle of mass m moves in a force field of potential V. Write the Hamiltonian.

Solution: - Here K.E. is
T= %m(x2 +y+2)

Sx=Pe g B B

m m m
and P. E.isV (x,y,2)
So H=T+V

— 1 2 2 2
H= o (0345 +02)+ Vixy.2)
Example 3: - A particle of mass m moves in a force whose of potential in spherical coordinates Vis —

cosf/r” . Write Hamiltonian in spherical coordinate (r, 8, ¢). Also find solution of H.J. equation.

]
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Solution: - L= Zm [r'2 +1202 +r2sin® 6 ¢32]—V(r,9,¢)

p "
tooor
pg:%:mrzé , P, =mr?sin®6 ¢

Hamiltonian is given by

2 2
H:i[pf+&+ Py J_,ucosé?

2m r’ r2sin’é@ r?

. oS oS oS
ertlng pr 25’ pa :%1 p¢:a_¢

Required Hamilton Jacobi equation is

2 2 2
§+i (ﬁj +%(§) +— _12 o _,ucc2)50:0 ..(D)
ot 2m|\or r<\ o6 r<sin® @\ o¢ r

Let S (t, 1, 0, §) = S1(t) + Sy(r) + S3(0) + S4(¢) in (1), then we have

65, 1 (dszjz 1(d83j2 1 (ds,)’ ucosd
B Qi ) [ +—— +
ot 2m| dr rz{ do r’sin? g\ d¢ r

L.H.S. is function of t only, R.H.S. is function of r, 6, ¢ and not of t, so it is possible only when each is

constant (= — E) (say).

as, _
dt

1 |(ds,) 1(ds,) 1 (dS £COSO
d | =2 | 4o == o =E
an Zm{( drj +r2(d8j +rzsin28(d¢j} r

Multiplying 2mr? and rearranging terms, we get

2 2 2
rZ(ﬁj —2MréE =— [dS3J 1 (ds“j +2mucoséd ... *)

-E = S, =—Et+constant ...(2)

dr do ) sin?6\ dg
L.H.S. of (*) is function of r only and R.H.S. is function of 0 and ¢. It is possible only if each is equal to

constant.

]
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. ___________________________________________________| ]
Let (ddsrj —2mEr’ = 3 ...(3)

ds,}Y 1 (ds,)
and - d0) “sna i +2mucosé = ...(4)

Then from (3), we have S, = J.1/2mE+£2l dr + constant ...(5)
r

Also from (4), we have

ds, ds,

—4 | =2mucosd sin* @— B, sin® H—sin® O ..(6
(d¢] H B (d@j (6)
L.H.S. of (6) is function of ¢ whereas R.H.S. is function of 6 and it is possible when each is equal to
constant.

ds, \’ ds ds, \’
Let | —2%| = —t = —4 | = (7

(@) ~5m (5] v

ds,
Al (8
O Py = p ®)
= S, = p,; ¢ + constant ...9)
Now from (7) and (8), we have p: =, ...(10)
Then using (10) in (6), we obtain
S3= J'\/Zm,ucose— p; cosec’d— 3, d@ + constant ..(11)

Now complete solution is given by S (t, r, 0, ¢) = Sy(t) + Sy(r) + S3(0) + Sa(dh)
Then using equations (2), (5), (9), (11), we have

S=—FEt+ _f /2mE+% dr+'[\/2myc0349—,b’1 - p; cosec’d d@+ ¢ p, + constant

5.7 Lagrange’s Bracket

Lagrange’s bracket of (u, v) w.r.t. the basis (qj, ;) is defined as

aq; op;  ap; A
ou ov ou ov

{U, V}q,p or (U, V)qu = Z|:
]
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5.8 Properties of Lagrange’s Bracket
1 Wv)=-(v,u)

2 (@ 9)=0
@) (pip)=0
4) (@i, p) =
Solution:
(1) We have
aq; p; dp; A
. v)= Z(au N avj
op; 04;  q; Op;
- z(@u v au avJ
:—(V,U)
g, OP, A0, 0Py
2 i, dj) = - =0
2 (@ ) g(@qi o, o, aqi]

Sinceq'sandp'sareindependent = ——% P =0 and P _ 0
oq; aq;

(3) Similarly, we can prove that

{pi, pj} =0
0 0 %)
i i ] i i

5.9 Invariance of Poisson’s Bracket under Canonical transformation

Poisson’s bracket is

ou ov au ov
U, V)g p= -
(Vs Zi:(aqj ;P an

The transformation of co- ordinates in a 2n — dimensional phase space is called canonical if the

transformation carries any Hamiltonian into a new Hamiltonian system.
To show: - [F, G] 4,p = [F, Glo,r
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Poisson’s brackets is

(8F oG oF GGJ

If q, p are functions of Q & P, then g =q (Q, P) & p=p (Q, P) and F & G will also function of (q, p),
then we have G = G (Qx, Py).
OF { G Q, , &G .apk}
aq, op, OJP. op;
Now [F, G] ap - z ql an pl k pl
ik | oF| oG .8Qk N oG P,
op; | Q oq; P, g,

oG [E@Qk_ﬁ.&}
-y QcLod; op;  op; au
X +8G{8F P, oF apk}

P L o b

- ;{%[F,Qk]@p +§G?k[F,Pk]qlp} ()

Now replacing F by Q;in (1), we have

[Qi Clqp= ZE[QI ’Qk]q,p +$[Qi P ]q,p

i,k k
oG
=0+ Y 3,
—~oP, "

oG
P,

oG
- [G, Qi]q,P == a_P

oF

and [F, Qlg,p = P ...(2)
k

= [Qi,Glqp=

Replacing F by P; in (1), we have

DDE, GJUS&T, Hisar 116 |



Mechanics MAL-513
.| ]
oG
Pi, Gl=——
[Pi, G] 20 =
oF
and [F, P =— ...(3)
<7

Put these values from (2) and (3) in (1), we get

(_ oG oF oG 6Fj
Q. P P Qy

=[F, Glqr

[F’ G]q,pzz

ik

5.10 Poincare integral Invariant

Under Canonical transformation, the integral
szIquidpi (D
S

where S is any 2 — D (surface) phase space remains Invariant

Proof: - The position of a point on any 2— D surface is specified completely by two parameters, e.g. u, v

Then % :q‘(u’v)} .(2)
Pi = pi(uiv)
In order to transform integral (1) into new variables (u, v), we take the relation
o(a,p)
doi dpi = 2 Zdudv ...(3
gi ap G(U,V) (3)
A M
where M —| QU QU | a5 the Jacobian.
o(uv) |9 9p;
o oV
Let Canonical transformation be
Qk = Qk (qv P, t)! Pk = Pk (q’ P, t) (4)
oQ..P)
th dQy dPy = —* X dudv ...(5
en Qk k a(U,V) ( )

If J is invariant under canonical transformation (4), then we can write

]
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ﬂZindpi = ”Zk:ko dP,
alg;, p; o(Q,, Py
or _UZ é?uf;)) dudv=£jzk: (a(uv)) dudv

Because the surface S is arbitrary the expressions are equal only if the integrands are identicals,

ie. Za(qiypi)zza( k'Pk) ...(6)

au,v) 4 ouv)

MAL-513

In order to prove it, we would transform (g, p) basis to (Q, P) bases through the generating function F,
(g, P, t). With this form of generating function, we have

oF, oF
= & - T2

2 2
Now P 0 () _so( O°F au, O°F R
ou oul\ aq, —\ 09,09, ou og;0P, ou

2 2
and%:g(@j Z( O°F, o, O°F 6ij

oV ov ag; T\ 09,00, ov Oq; P, ov
— A 9P
di,0i) _ ou ou
Now, S\Mis i)
M2 o) |
o oV
o, O0°F, aqk+ 0°F, oP,
_ au 09,09, ou 0q,0P, ou
09, O°F 8qk+ 0°F, oP,
o 0909, v 0Q;0P, ov
o,  O°F, g, oq;  O°F, OP,
_ ou  0g;0q, ou +Z ou  og;0P, ou
| aq; 0°F, &0, | a0 0°F, P,
ov 09,00, ov N 0g;0P, ov
L N a, P
L. H. Sof (6) = au au o (7
©=2 e, | &, Zk o, p | 7
oN oV o oV
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We see that first term on R.H.S. is antisymmetric expression under interchange of i and k, its value will
be zero,

ie.,
0%F e O%F o
ou  ou |_ ou au
i,zkaqiaqk i Ay ‘kz,iaqkaqi My i
o oV o oV
| @
—-y OF lau au
500,00, | Qi A ...(8)
oV oV
o°F 2 2
ou  ou | _
o 2|, da | °
ov oV

Similarly, replacing g by P, we have from (8)

P P,
,_ |9

3 OF Tau au|_ g
T oPoP, | P OB
oV oV

Now equation (7) can be written as

A TCY A R
za( i’pi):z OF lau au|, v 9F |au au
i G(U,V) i,k al:)i apk ﬁ @ ik aqiaPk % ﬂ

N oV N oV

O°F, P O°F, &g oP,
) 5| PP uoPaq ou au
v) % O°R ok, O°R g R
PP v Poq v v

olq;
D%
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i(@j P
ou ou
“Xo(m) &
vk, ) ov
oF,
Puta Q. . then
oQ, P, ( )
|-y AP _p s of 6
ST &R resa
N oV

which proves that integral is invariant under canonical transformation.

5.11 Invariance of Lagrange’s bracket under Canonical transformation

The Lagrange’s bracket of u and v is defined as

aqi aql
_ Z ov
o opi
ou ov

IS invariant under Canonical transformation.

Since z

So Lagrange’s bracket is also invariant under canonical transformation.

5.12 Check Your Progress

1. Write the different forms of the generating function of the canonical transformation under
consideration.

2. Write the generating function of the form F; (g, Q, t).

3. Which equation is referred to as the Hamilton-Jacobi equation?

4.  Define Lagrange brackets.

5.13 Summary
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In this chapter we have discussed about the canonical transformations, Hamilton-Jacobi equation,
Jacobi theorem, Method of separation of variables, Lagrange’s Bracket and Invariance of
Lagrange’s bracket and Poisson’s bracket under canonical transformations. Some examples based

on canonical transformations and method of separation of variables has been discussed in detail.

5.14 Keywords

Canonical transformations, Hamilton-Jacobi equation, Method of separation of variables,

Lagrange’s Bracket

5.15 Self-Assessment Test

=

Explain Canonical transformations. Show that the transformation: P =

N

(p2 +q2) ; tanQ= %

is canonical.

2. Show that the transformation:
sinp

P=gqcotp ; Q= Iog(TJ

is canonical.

3. Solve the problem of motion of a particle of mass m moving under a central force using Hamilton-
Jacobi method.

4.  Give solution of one dimensional harmonic oscillator problem using Hamilton-Jacobi method.

5.16 Answers to check your progress
1. The generating function /" may have the following forms:
Fl (q’ Q1 t)! F2 (q1 P1 t)a F3 (pa Qa t)1 I:4 (pa Pa t)

2 Kkens Q0
ot

3. The Hamilton-Jacobi Equation is

H (qj,%, tJ+%:O,where % =p;
J J

]
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4.  Lagrange’s bracket of (u, v) w.r.t. the basis (qj, pj) is defined as

a; op;  ap; A
ou ov ou ov

{u, V}qp O (U, V)qp = Z
]
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Chapter - 6
Attraction and Potential
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6.0 Learning Objectives

In this chapter the reader will learn about attraction and potential of rod, disc, spherical shells and
sphere, Laplace and Poisson equations, Work done by self-attracting systems, Equipotential surfaces and

Surface and solid harmonics.

6.1 Introduction

The Law of Gravitation states that “every particle in the universe attracts every other particle with
a force which is directly proportional to the product of the masses of the particles and inversely
proportional to the square of the distance between them”. This law was discovered by Sir Isaac Newton
(1642-1727).
Thus, if m , m’ denote the masses of two particles and ‘r’ their distance apart, then the force of
attraction between them is

mm'
r2

where y is known as the gravitation constant. Gravitation constant » measures the attraction of two
particles, each of unit mass, at unit distance apart. To avoid a difficulty in defining the distance between
two particles, we may define a material particle as a body so small that, for the purposes of our

investigation, the distance between different parts of body may be neglected. The numerical value of y

is ——————— approximately when C.G.S. units are used. We can choose units such that ¥ = 1. Then
15,500,000 -°P y 4

such units are called astronomical or theoretical units.

The acceleration “f* produced by the attraction of a particle of mass ‘m’ on a particle at a distance ‘r’ is

given by,

f=y

r.2

so that ¥ =1, when f, m and r are all unity. Hence, the astronomical unit of mass is the mass of a particle

which by its attraction produces unit acceleration at unit distance. We can find the astronomical unit of

mass in grammes by taking the above formula for acceleration, which holds good in all systems of units,
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and putting r = 1 cm, f = 1 cm/sec?, sothat ¥y m=1,orm = 1/ = 15,500,000 grammes. In what
follows we shall omit the constant y .

Potential:

Let P(x, y, z) be any point of space. Let 1, I, , I5, ...... denote the distance PA , PA, , PA;, ......
e, =X —X°+,-y)P’+(@z. -2 for k=1,2,3,..... ..(1)

Let us now define a function V (X, y, z) by the formula
\VED e ....(2)

The function V defined in (2) is a function related to a system of attracting particles having a definite
value at every point P of space external to the particles. It is a function of the co-ordinates (X, y, z) of P
and is clearly a single-valued function, in the sense that it cannot have more then one value at each point
P; for it represents simply the sum of the masses of the separate particles divided by their respective
distances from P. Further, V represents a sum which does not depend on the particular system of axes of
reference.

Now, differentiation of equations (1) and (2) with respect to x gives

oV _x
OX
Similarly,
v _y v _,
oy oz
where (X, Y, Z) denote the components of the attraction of the given system of particles at point P(X, v,
2).

Definition: The function V defined by (2) is called the potential of the attracting particles, or the

potential of the field of force.

6.2 Attraction of a uniform straight rod at an external point

]
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.| ]
AB be arod
ZAPB=a-p
P
X o
p
B Y
A Q ébXQ ------------- X B | |\_/|

Let m be the mass per unit length of a uniform rod AB. It is required to find the components of attraction

of the rod AB at an external point P.

Let MP =p
Consider an element QQ" of the rod where
MQ =x , QQ " =dx
and ZMPQ=0
InAMPQ
tanezM—in = x=ptand ..
MP p
PQ PQ
__p
= PQ=—— = PQ=psecH L (FF
Q p— Q=p **)
Mass of element QQ” of rod = m dx
= mp sec®d do ...(using*)
2
The attraction at P of the element QQ" is = mass __ mpsec do along PQ

(distance?  (PQ)?

Therefore, Force of attraction at P of the element QQ” is

]
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_ mpsec’ 6do
p?sec’0

%de alongPQ

Let AMPA =oaand ZMPB=J

Then f= Imde
s P

MAL-513

...[using(**)]

(1)

Let X and Y be the components of attraction of the rod parallel and L, to rod respectively, then

X = jmsinede
p
B

a

and Y= mcosedE)
s P

Therefore, X = 0 [ coso :% [cosB —cosa

P

p 2

and Y= [sinof = [sino—sinp]

P p

- y=" [2 cos® P in G_B}

p 2 2

Resultant force of Attraction R is given by
R=VX?+Y?
— R= 2_m5| OL_—B
2
= 2—msin A—AZB

Resultant R makes angle tant (éj

= T[z sina—JFB s,ina—_B

Q)

..3)

[using (2) and (3)]
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or % (a+p) with PM { tanl(é) = {tanl(tan G_;B)ﬂ

I.e., it acts along bisector of angle ZAPB.

Also x=-_ M -.-cosﬁzi,comc:i &using (2)
PB PA PB PA

Cor: - If the rod is infinitely long, then angle APB is two right angles and Resultant attraction = ZTm 1

to the rod.
6.3 Potential of uniform rod

By definition, the potential at P is given by

= _Tmsecede
B

=m {Iog tan(E + Qﬂ
4 2)],
= V=m|log tan(E + gj —log tan(E + Ej
4 2 4 2
an( 2+
2 4

'[an(B + nj
2 4

6.4 Potential at a point P on the axis of a Uniform circular disc or plate

= mlog

We consider a uniform circular disc of radius ‘a’ and P is a point on the axis of disc. The point P is at a

distance r from the centre O, i.e.

OP=r,0Q =X, PQ = v/r? +x?

Let us divide the disc into a number of concentric rings and let one such ring has radius ‘x’ and width dx.
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Then, Mass of ringis=p 2nx dx ,

where p density of material of disc p = mass/Area

. o 2np xdx
Therefore, Potential at P due to this ring is given by, dV = —
Vre+x?

OP=r

Hence, the potential at P due to the whole disc is given by

¢ xdx
V=2np [ 22—
'([\/x2+r2

=V= 2%).a[ZX(XZ +r2)_% dx

0

= V=2np l\/m—rJ

Let Mass of disc =M =ma? p

= np=—
a2

ThenV = 2—'?' vaZ+r? — r] is required potential at any point P which lies on the axis of disc.
a

6.5 Attraction at any point on the axis of Uniform circular disc

Here radius of disc = a

OP=r, PQ = VX® +1?

0Q=x
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We consider two element of masses dm at the two opposite position Q and Q" as shown. Now element
dm at Q causes attraction on unit mass at P in the direction PQ. Similarly, other mass dm at Q" causes
attraction on same unit mass at P in the direction P Q" and the force of attraction is same in magnitude.
These two attraction forces when resolved into two directions one along the axes PO and other at right
angle PO. Components along PO are additive and component along perpendicular to PO canceling each
other.

Mass of ring = 2nx dx p

Attraction at P due to ring along PO is given by

o — (Zd m)cose

(PQY
£ €00 .2nxdxp r.2axdxp r.
df = = longPO [ =—In AOP
(PQ)2 (PQ)3 along [-.-cosO Pan OPQ]
ff = 2mp.rxadx
(r2+x2)g

Therefore, the resultant attraction at P due to the whole disc along PO is given by
- a 3
f =1rpr_|.(2x)(r2 +x2) 2 dx
0

1 a

npl[—Z(X2+r2)_2}

1 1
2npr | =————|along PO
[r Va2 +r2}

Let M = mass of disc of radius a

0

= p na’
—np=
p a2

Sofzzl\z/l{l— r }
a a?+r?
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_ oM

2 [1—cosal]

where a is the angle which any radius of disc subtends at P

Particular cases:-

1. If radius of disc becomes infinite, then o =g

So we have
f= 2_I\2/I [1— COSE}
a 2

= 2a_|\2/l = constant [here, it is independent of position of P]
2. When P is at a very large distance from the disc, then o — 0
Therefore, f = 2a_|\2/l(1_ cos0)

=0
6.6 Potential of a thin spherical shell

We consider a thin spherical shell of radius ‘a’ and surface density ‘p’ . Let P be a point at a distance ‘r’
from the center O of the shell. We consider a slice BB"C'C in the form of ring with two planes close to

each other and perpendicular to OP.

Area of ring (slice) BB'C'C is = 2n BD x BB’,
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where Radius of ring, BD = a sinf

and width of ring, BB" =a d6

Therefore, Mass of slice (ring) is
=2masinfaddp
=2n a’ p sinf dO

Hence, Potential at P due to slice (ring) is

_ 2ra’psind do
X

dv (1)

Now from ABOP, we have
BP? = OP?+ OB? — 20P. OB cosf

= x?=r’+a’ — 2ar cosd

On differentiating, we get
2x dx = 2ar sin 6 dO

— X dx =sino do
ar

2
Putting in (1), we get dV = 2ma pxdx
x.ar

_ 2mapdx

r

Therefore, Potential for the whole spherical shell is obtained by integrating equation (2), we have

V= J.znrapdx

Now, we consider the following cases:-
Case (i) The point P is outside the shell. In this case, the limit of integration extends from x = (r — a) to x

=(r+a).

DDE, GJUS&T, Hisar 132 |



Mechanics MAL-513

Hence V= Zrap jdx
r r-a
2
N V= 4drnap

Here, Mass of spherical shall =4n a’ p

ThenV = M

r
Case (ii) When P is on the spherical shell, then limits are from x =0 to x = 2a (here r = a).

2a
Then V= Zmap jdx
a 0

4ma’p _ M

Case (iif) When P is inside the spherical shell, limit are from x=(a—r)to (a+r).

So V=4nap=%

6.7 Attraction of a spherical shell
Let us consider a slice BB"C"C at point P, the attraction due to this slice is

2na’psin 0dO
2

df = along PB

The resultant attraction directed along PO is given by

2ra’psin® do
——— C0S QA

df = ~
We know that sinf d6 = );_(::)(
In ABDP, cos o = P—D:LCOSO
PB X
. 7. 2ma’pxdx(r—acosd
. df = 4
ar.x X

We know that

]
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X% = a% + r* — 2ar cosd
= X% —a’+r?=2r’- 2ar cosd
x*—a%+r?

2r

=r—acoso

2rna’px dx (x2 —a’+ r2)
ar.x? 2rx

_ map( X —a’+r?
= — 5 dx
r X

Then, df =

_ 242
= df = "razp(lﬂ Xza jdx

Hence the attraction for the whole spherical shell is obtained by integration.

2 a2
Therefore, f= Tcasz-{H r 2a }dx
r X

Now we consider the following cases depending upon the position of P:

Case (i) When point P is outside the shell, then limits of integration are x = (r —a) to (r + a).

f_

\:
|
‘ |
&
©
&
/T
H
_|_
=
N
|
<y
N
~
o
X

=
1
‘Fl
YR
=)
1
X
+
_
)
|
QD
[N
~
|
N
N—
| I
T
QD

Case (ii) When pt. P is on the shell, the limit of integration are x = 0 to 2a.

2a 2 _ A2
So f:ni;pj.(ur 2a jdx
res X

Here integration is not possible (due to second term is becoming indeterminant), because when P is on
the shell, then

r=a ; x=0

]
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Hence to evaluate the integral, we consider that pt. P is situated not on the surface but very near to the
surface.
Let r=a+ 3, wheredisvery small

2a+6 2a+6 2 .2
Then attraction is f :%{ I dx + J {—(a+6) a }dx}
8

8

2a+d
2 _ map 2ad

Ta B 1 2a+d
= TP 53+ 235 (7j }
)

2 a-
r< 2a+0 O

Tap _2 2ad ZaS}

2
f:2np2a 6[2— 0 }a36—>0,thenr:a
r 2a+90
_4ma’p _ M
a’ a’

Case (iii) When point P is inside the shell, then limitsare x =a—rtoa+r.

a+r 2 2
¢ Tmap r‘+a
f_r—zj{1+ w }dx
hd

r

Rt -

a—r

So, there is no resultant attraction inside the shell.

6.8 Potential of a Uniform solid sphere

A uniform solid sphere may be supposed to be made up of a number of thin uniform concentric spherical

shells. The masses of spherical shells may be supposed to be concentric at centre O.

Case I: - At an external point
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Therefore the potential due to all such shells at an external point P is given by

where M is the mass of solid sphere.
Case I1: - The point P is on the sphere.

Incase I, putr=a

V= % , Where a = radius of sphere

Case Il1: - At an internal point. Here point P is considered to be
external to solid sphere of radius r and internal to the shell of vﬁ
internal radius r, external radius = a. h

Let V; = potential due to solid sphere of radius r
and V, = potential due to thick shell ofinternal radius r and external radius a

mass of sphereof radius r
r

Then V;=

wr’p _

r

nrp

wlps
wlps

To calculate V,
We consider a thin concentration shell of radius ‘x’ and thickness dx. The potential at P due to
thin spherical shell under consideration is given by
Anx2dxp
X

=4nx dx p

Hence for the thick shell of radii r and a, the potential is given by
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a
V, = 47:ij dx
r

a’-r?

V, = 4np( J =2np (@°—1?)

Therefore, the potential at P due to given solid sphere is

V=Vi+V,= %np (3a° - r?)

. . 4
Now M = Mass of given solid sphere = 3 na’p

— o = 3_M
P= 4
2 3M M
Hence V= == (3a® -r?)=— (33> - r?
3 4a3( ) 2a3( )

6.9 Attraction for a uniform solid sphere

Case I: At an external point

where M = Mass of sphere and my, m,.....
are masses of concentric spherical shells.
Case I1: At a point on the sphere,

Here we put r = a in above result.

We get r::a_'VZ'

Case I11: At a point inside the sphere.

The point P is external to the solid sphere of radius r and it is internal to thick spherical shell of radii r
and a.

And we know that attraction (forces of attraction) at an internal point in case of spherical shell is zero.
Hence the resultant attraction at P is only due to solid sphere of radius r and is given by

]
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massof sphereof radiusr

F= 2
_4nr’p_4
"3 3P
3M
fM=—-ma = np= o
P P~ 43
Then T::&;
a

6.10 Self attracting systems

To find the work done by the mutual attractive forces of the particles of a self-attracting system while the
particles are brought from an infinite distance to the positions, they occupy in the given system. System
consists of particles of masses my, mo, ....... at A, A,,....... etc. in the given system A.

We first being m; from infinity to the position Aj;. Then the work
done in this process is zero, since there is no particle in the system
to exert attraction on it. Next m, is brought from infinity to its
position A,. Then the work done on it by m; is = potential of m; at
Ao x My

M, MM,

o I

where ry; is the distance between m; and m; (r12 = r21).
Then these two particles m; and m; attracts the third particle ms.
Work done on mz by m; and m; is

m;ms n m,M,

I3 I3

When my is brought from infinity to its position A4, then work done onitby m; , myand ms is =

mym, m,m, msm
14 + 24 + 34
Mg 24 34
Hence the total work done in collecting all the particles from rest at infinity to their positions in the

system A is

]
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- mm, Jr(mlm3 +m2m3

rl 2 rl 3 r2 3

mgm, : . .
= Z _— where summation extends to every pair of particles.
st

m, m
Let Vy= —24+—23 4+ ..

= potential at Ay of my, ms, ........

V, = potential at A, of my, mz, My, ........

V3= +—t
Mz Tz Iy
m.m, 1
Then Z ? t=§[V1m1+V2m2+ng3+ ......... ]
st

Total work done = %va

This represents the work done by mutual attraction of the system of particles. If the system forms a

continuous body, then work done will be
= 1IV dm
2

Conversely (if particles are scattered) the work done by the mutual attraction forces of the system as its

particles are scattered at infinite distance from confinguration A, then work done =
-1 -1

—yYmV=—|Vdm

2 z 2-[

We can find the work done as the body changes from one configuration A to another configuration B.
The work done in changing of its from A to state at infinity + work done in collecting particles in a state

at infinity to configuration B
= _—1jv dm+1J.V' dm'
2 2%
A—>o—>B
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Example: A self attracting sphere of uniform density p & radius ‘a’ changes to one of uniform density &

radius ‘b’. Show that the work done by its mutual attractive forces is given by

3 11
SMEl==Z=
5 (b aj

where M is mass of sphere.
Solution: Here the work done by mutual attractive forces of the system. As the particle which constitute

the sphere of radius ‘a’ are scattered to infinite distance, so
-1
W, = 7J.V dm
We consider a point within the system at a distance x. The potential at this point within the sphere is
2 2 2
V= énp(?)a —X )

Let us now consider at this point, a spherical shell of radius x and thickness dx, then

dm = 4n p x? dx

Vdm= %np (3a? — x?) 4n X%p dx
_8 29 0m2 2
—STEp X (3a° — x°) dx
8 a
= J.Vdmzénzpz'([xz(Baz—xz)dx

3 5

J. Vdm = %nzp{Bazx——X—}

3 5
8 »4 .5 a| 8 ,,4a°
= — a- — |=— -
3”‘){ 573" 5
32 525
= Zn%pla
15" P

Now M = Mass of sphere of radius a

]
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4
" M=_ al
3™ P

3M
4nad

= p=

2
. IV dm = QM_
5 a
—3 I\/I2
5
Similarly if W3 is work done in bringing the particle at oo to the second configuration (a sphere of radius
b)

Hence W; = —IV dm

3w
"5 b
Total work done is given by

Then W, = —IV‘ dm

W=W;+W,= §I\/' (l—lj
b a
6.11 Laplace’s equation for potential

Let V be the potential of the system of attracting particles at a point P (X, y, z) not in contact with the

particles so that

V:Z? () p

where m is the mass of particle at Py (a,b,c) ,

r = distance of P from the Py,

andrP=(x —a)’ + (y—h)’>+ (z-c)® (2
oV m or m (X—a)

Then(l) > — =—)» ——=—Y —

en () X r? ox r2 r?

(@ ad Zox—a) = X X2
@=a =2
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]
oV m(z—c)
R 2 r3
oV 0

cvY_Yr_ _ -3
W 8x[ Zm(x—a)r]

=—sm(x-a) (-3r% % —Emr3(1)

o ea)
= Zm3r—5 —ZF

o2V m(y —b)? m
and —- = 32%_ZF

ayZ
o°V m(z —c)? m
@ T e
0’V 0*V  o°V

= sttt =0
% o2 oz

which is Laplace equation.
V — potential
dV = small volume elemnt
dm=pdVv

So V:J'@/
oV -1\or
N 1=1L pav
OX I(rzjaxp

6.12 Poisson’s equation for potential

Let the point P (X, y, z) be in contact (inside) the attracting matter.
We describe a sphere of small radius R and centre (a, b, ¢) contains
the point P.

p = density of material (sphere)
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Since the sphere we describe is very small, therefore we consider the matter inside this sphere is of
uniform density p.
So potential at P may be due to

Q) the matter inside the sphere

(i) the matter outside the sphere.

V1 = contribution towards potential at P by the matter outside the sphere

V, = contribution towards potential at P by the matter inside the sphere.
Since the point P is not in contact with the matter outside the sphere. Therefore by Laplace equation,
VAV; =0.
Here V, = potential at P (X, y, z) inside the sphere of radius R.

V, = %np (3R* - %)

where r* = (x — a)? + (y — b)? + (z — ¢)?

e 2 mpf-2r )= ()2

ox 3 OX r
-4
= ?np(x—a)
oV, -4
> = T
OX 3
. oV, -4 o’V -4
Similarly, =T, —— =751
oy 3 oz 3
2 2 2
ﬁax\gz 4 Gay\gz N 862\22 = _4np

= V2V, =—4np

Since total potential V =V; + V,
VAV = VAV, + VAV,

o0’V 0’V 0%V
+ +

v R

]
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This equation is known as Poisson’s equation.

6.13 Equipotential Surfaces

The potential V of a given attracting system is a function of coordinates X, y, z. The equation
V(X, Y, z) = constant
represents a surface over which the potential is constant. Such surfaces are known equipotential surfaces.

Condition that a family of given surfaces is a possible family of equipotential surfaces in a free space.
To find the condition that the equation

f(x, y, z) = constant
may represent the family of equipotential surface.

If the potential V is constant whenever f(x, y, z) is constant, then there must be a functional relation
between V and f(x, y, z) say,

V= o{f(x,y, 2)}

e V=)
N_ oo
&-‘b(f) x
o2V of \? o2f
= Wzd)"(f) (&j ¢(f)—
RaY; of \ o2f
d S5 =¢(f
an Y ¢ ()(ayj +¢'(f) — Y

o’V (of 82f
and —5= ¢"(f) (5) oM =7

Adding
2 CACANA A ( T (ﬂjz (@T
ViV = d)(f)( ayz p J ¢(){ ) oy

But in free space, V2V = 0
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o N o N o*f
2 2 2 1"
0>: oy ' oz - =_¢. (f) = a function of f
(ﬁ} of (afj ¢'(f)
— | | — | +|—
oX oy oz

= y(f) (say) ()

This is the necessary condition and when it is satisfied, the potential V' can be expressed in terms of f(x,
Y, 2).

Then V = ¢(f), where Z,,’((:; +y()=0

Integrating, log ¢'(f) = log A — Jw(f) df

- |og(&Af)j:—jy/(f) df

= ¢'(f) =A eff\u(f) df
Again integrating,
V=gH= A [e" ™ df+B .2

which is required expression in terms of f(x, y, z) for V.

Example: - Show that a family of right circular cones with a common axis and vertex is a possible
family of equipotential surfaces. Hence find the potential function.
Solution: Taking axis of z for common axis. The equation of family of cones is

2+y2

X

f(x,y,2) = 2 = constant ..(D)
of ot o°f
aXZ +8y2 +822 —¢”(f)
To show: - 5 = = a function of ..
(ﬁ) of (afj ¢'(f)
OX oy 0z
Now
of 2x of 2y of 2 2 3
_—— , _— , _— = —2
X7y m s EIEE)
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o 2 o 2 o°f _
a7 a7 e
Therefore, we have
ot o o

_¢ll(f): ax2+ay2+622

)@

272 +27° +6(x* +y?) z°

z* 472 (X% +y?) +4(X* +y?)?

72 [42% +6(X* +y?)]
C[422 (¢4 +y?) A2 +y?)?]

2 2
27* {2+3(X ery )}

—¢"(f) _ z
# (1) Phy? (X y? )
2+ 3f 2+3f .
= = =f t ff
2(F117)  2f(f+1) uneono
— _;((f;) = 2?(+liff) [Function of f, so condition (*) is satisfied]
N _¢(f)+ 2+3f

(f) 2 (1+f)

—#(H, 1, 1
KOO

Integrating, we get

]
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log ¢'(f) + log f + % log(1+f)=logC

C
log ¢'(f) = log —
e C

RO N -
L d__C
df fJ1+f
C
do= df + C’
= fdo If\/1+f
Put f=tan%

—  df=2tan0 sec’0 do
2 tand sec’0 do .

¢=C
J‘tanze J1+tan%0

2
N b =C 2 .sec 0
tan® secO

CI

+C'

=2C jﬁde +C
tan0

=2C jcosece de + C’

V = ¢(f) = 2C log (cosec 6 — cot 6) + C’

or V = ¢(f) = 2C log (tangj + C' is the required potential function. So V is constant when 6 is

constant.

6.14 Variation in attraction in crossing a surface on which

there exist a thin layer of attracting matter

Let P; and P, be two points on the opposite side of surface.

B>

o is the surface density of small circular disc of the surface

between Py and P,. For potential at surface, V1 =V,
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d No M =—4noc
on  on

To find the attraction of matter, when the potential is given at all points of space, then Poisson’s equation
VA = —4np
gives the volume density of matter.
-1,
= — VvV
P 4n
If potential is given by different functions V1, V, on opposite side of a surface S, then surface density o
is given by
-1/ 0V, oV,
. _{ ) 1}

4r| on  on

Example: The potential outside a certain cylindrical boundary is zero, inside it is
V = x* - 3xy? — 9x? + 3ay”. Find the distribution of matter.

Solution: Since V, = outside potential and V; = Inside potential

Here V,=0

We find the boundary.

Since the potential is continuous across the boundary and zero outside the boundary. The boundary may

be given by
X3 — 3xy? —ax? + 3ay* = 0

or (x—a)(x*-3y")=0

= (x—a) (x++/3y) (x~ ¥3y) =0

AB is equation of linex = a

OB is equation of line x + v/3y =0

OA is equation of line x — +/3y =0

The section is an equilateral AOAB of height ‘a’.

Y A
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M

v 3x? — 3y? — 2ax
% = — bxy + 6ay
882x\£1 = 6x—2a
a;y\zll =—-6x +6a
Vi g

oz?

So that inside the region,
-1 _, -1
= -V, = —[4a
P dn ' 4 L4l
= p=—
T

and outside, p =0 since Vo, =0
AtPon AB (x = a),

-1 [av2 avl}

oX  OX

o= —

A7t

:4_—71 [ 0—3x%+3y* + 2ax] x-a

]
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1o 2 3|la®

:_3 —a = — — ...1
=0 4n[y 1 475{3 y (1)
In AOAM, OA? = OM? + AM?

=  OA’=a’+ %(OA)Z
= %(OA)2 =a® = (OA)= gaz

=  (2MA)?= %az = (MA)’ = :—13a2 .(2)
.. From (1) and (2), we have
c= i[MA2 — MP?]
dn

i(|\/|A + MP) (MA — MP)
A7

3
= 4—n(PB) (AP)
At P on OA (x = +/3y),
o 1[24)
" 4| on

—sin 30° % +cos 30° %}
OX x=v3y

1
4

11-1M V3N
| 2 ox 2 oy

1123, +§y2 +ax—3v3 xy +373 ay}
47'[_ 2 2 x=/3y

B 2
=32 3% a3k +3J3 a.i}

2 23 V3

£~

= czlx(a—x).
T

MAL-513
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6.15 Harmonic functions

Any solution of Laplace’s equation V2 V = 0 in X, y, z is called Harmonic function or spherical
harmonic, where Laplace’s equation is given by
VARG AVARGAYAR

VZV:aX2 +8y2 o =0

Note: If V is a Harmonic function of degree n, then

o* 0% o'
=T V is a harmonic function of degreen—p—-q-—t.
oxP oyt oz

For if we differentiate the equation V2V = 0, p times w.r.t. X , g times w.r.t. y and t times w.r.t. z, we get

& iﬂa_tv =0
oxP oyt oz
6.16 Surface and solid Harmonics

In spherical polar coordinates (r, 6, ¢) , Laplace’s equation is

2
g(rZ&J_F_LQ(SinQ&j_F%ﬂ;:O (D)
or or sinb oo a0 ) sin<0 o¢

LetV =r"S,, where S, is independent of r or S,(6, ¢).
OlpVI_0o rZQ(rn S,)
ol or| o or

a 2 n-1
= —[r"Synr
ar[ ]

_0
or

=n(n+1)r"s,

0

[Snn ] =nS, F ()

2
(1):>n(n+1)r”8n+.iﬁ sing, r n +_12 rnaszn —0
sin6d 00 00 ) sin“0  0¢

n n 2
= nin+1)r"S, + r Q(Sineasn + _rz 882" =0
sin6 o0 A0 ) sin“0 o¢
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2
= n(n+1)S,+ iﬁ sine6Sn + _12 0 SZ” =0
sSind A0 A ) sin“0 o¢

&S, 8%s, 1 &%,

n(n+l)S,+cot6 —>+ +— = (2
= D 0 007 sin’0 og? @
If cos 6 = p, then we obtain

0 2\ 0S 1 0°S
N(n+1)S,+ —| (1- v+ =0 ...(3
(n +1) au{( ) ﬁu} - o2 ©)

A solution S, of equation (2) is called a Laplace function or a surface harmonic of order n. Since n (n +
1) remains unchanged when we write —(n +1) for n, so there are two solutions of (1) of which S, is a
factor, namely, " S,and r™* S,,.

These are known as solid Harmonic of degree n & —(n +1) respectively.

Remarks:

1. If U is a Harmonic function of degree n, then % is also Harmonic function.
r

Let U=r"S,
U r"s S —(n+1)
so that 2nil 2n+nl - n:]tl :Sn r
r r r
which is Harmonic.
rd . . . XyzZ . .
Let xyz — 3" degree is a solution of Laplace equation, then —- is also Harmonic.

r
2. If U is a Harmonic function of degree —(n +1), then Ur*"*!
Uu=r"ts,

sothat ™t u=r"1r"1ls =S,

is also a Harmonic function. We may write

which is Harmonic.

6.17 Surface density in terms of surface Harmonics

The potential at any point P due to a number of particles situated on the surface of sphere of radius ‘a’

can be put in the form
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]
0 r.n
Vi=> —— U, , whenr<a (D
n=0 a
an
and V,= zm U, , whenr>a ...(2)
r

where U, denotes the sum of a number of surface Harmonics (for each particle) and therefore itself a
surface harmonic. We assume (1) and (2) to represent potential of a certain distribution of mass and want

to find it (density) on the surface.

Here U, is Harmonic,
=  VAVi=0, VV,=0

Here on the surface of sphere, density is given by

or or

dno = [%_%}

4

_1[
= o=

2

oV, oV,
or or

u.nr+?

U,a"(n+1) |

an+1

+2

rn+2

r=a

_ 1 Z Unna”_l +Z Una” (n +1)_

At an+1 an+2
1] n (n+1)
=— >»U,— U ——=
P ISR
(2n+)U,
= ...(3
Z Ama? @)

If potential is given by (1) and (2), then surface density is given by (3).

6.18 Check Your Progress

1.  What is the potential at any point on the axis of a uniform circular disc of radius ‘a’ and mass M?
2. Write the attraction at any point inside a uniform solid sphere of radius ‘a’ and mass M.

3. Define equipotential surfaces.
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4,  Write Poisson’s equation for an attracting matter.

6.19 Summary

In this chapter we have discussed about the attraction and potential of rod, disc, spherical shells and
sphere. Further we have studied about Laplace and Poisson equations, equipotential surfaces,

Surface and solid harmonics.

6.20 Keywords

Attraction and potential, Laplace and Poisson equations, equipotential surfaces, Surface harmonics,

solid harmonics

6.21 Self-Assessment Test

1.  Discuss the attraction of a thin spherical shell of radius ‘a’ and surface density * p’.

2. Show that a family of right circular cones with a common axis and vertex is a possible family of

equipotential surfaces and find the potential function.

6.22 Answers to check your progress
1.  The potential is given by V = i—l\z/l vaZ+r? — r]

Mr

2. The attraction is given by ﬁ:—s
a

3. The surfaces over which the potential is constant are known equipotential surfaces.
o0’V 0V 0%V

Poisson’s equation for an attracting matter is + + = V3V =—4np

aXZ ayZ 822

>
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