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Chapter - 1 

Moment of Inertia – 1 

Structure: 

1.0 Learning Objectives 

1.1 Introduction 

1.2 Some Basic Definitions 

1.3 Moment of Inertia in one, two and three dimensions 

1.4 Examples based on Moment of inertia 

1.5 Moments and products of inertia about co-ordinate axes  

1.6 M.I. of a body about a line (an axis) whose direction cosines are <, , >  

1.7 Kinetic Energy (K.E.) of a body rotating about the origin O  

1.8 Parallel axis theorem  

1.9 Perpendicular axis theorem  

1.10 Angular momentum of a rigid body about a fixed point and about a fixed axis 

1.11 Principal axis and their determination 

1.12 Moments and products of Inertia about principal axes and hence to find angular momentum of body 

1.13 Momental Ellipsoid 

1.14 Check Your Progress 

1.15 Summary 

1.16 Keywords 

1.17 Self-Assessment Test 

1.18 Answers to check your progress 

1.19 References/ Suggestive Readings 

1.0 Learning Objectives 

In this chapter the reader will learn about Moments and products of Inertia, theorems of parallel and 

perpendicular axes, principal axes and momental ellipsoid. 

1.1 Introduction 
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Inertia of a body is the inability of the body to change by itself its state of rest or state of uniform 

motion along a straight line. Inertia of motion is the inability of a body to change by itself its state of 

motion. An external force is always required to change the state of rest or state of uniform linear motion 

of the body. This force varies directly as the mass of the body. Hence mass of a body is a measure of 

inertia of the body in linear motion. Similarly, a body at rest cannot start rotating about an axis on its 

own; and a body rotating about a given axis cannot stop on its own, i.e. there is inertia of rotational 

motion as well. A quantity that measures the inertia of rotational motion of the body is called rotational 

inertia or moment of inertia of the body. Thus rotational inertia plays the same role in roational motion 

as mass plays in linear motion, i.e. moment of inertia is rotational analogue of mass in linear motion. We 

shall denote moment of inertia of a body by I.  

Let there are n particles of masses mi, then moment of inertia of the system is 

    

        

 

 

 

 

 

 

I = m1 
2
nn

2
22

2
1 dm...dmd   = 



n

1i

2
iidm  

 I =  md
2
   

where  di are the  distances of particles from the axis. 

 

1.2 Some Basic Definitions 

(i) Moment of inertia  
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Moment of inertia of a body about a given axis is defined as the sum of the products of masses of all the 

particles of the body and squares of their respective perpendicular distances from the axis of rotation. 

Thus we have 





n

1i

2
iidmI  

(ii)  Radius of gyration  

Radius of gyration of a body about a given axis is the  distance of a point P from the axis, where if 

whole mass of the body were concentrated, the body shall have the same moment of inertia as it has with 

the actual distribution of mass. This distance is represented by K.  

 

 

 

 

 

 

 

 

 

 

When K is radius of gyration, then we have  

       I = I   

 MK
2
 = m )r...rr( 2

n
2
2

2
1   

       MK
2
   = 

n

)r...rr(mn 2
n

2
2

2
1 

 

 MK
2
 = 

n

)r....rr(M 2
n

2
2

2
1 

 

 K = 
n

r...rr 2
n

2
2

2
1 
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where n is the number of particles of the body, each of mass „m‟ and r1, r2,…, rn be the perpendicular 

distances of these particles from axis of rotation.  

Where M = m  n = total mass of body.  

Hence radius of gyration of a body about a given axis is equal to root mean square distance of the 

constituent particles of the body from the given axis.  

1.3 Moment of Inertia in one, two and three dimensions 

(i)     M.I. in three dimensions  

Let us consider a three dimensional body of volume V. Let OL be axis of rotation. Consider an 

infinitesimal small element of mass dm, then 

mass of small element dm =  dV, 

 is the density of where dV = volume of infinitesimal small element and 

material. Then moment of inertia of body is 

   I = 
V

2
mdd  

  or I = 
V

2 dVdρ  

(ii)   M.I.  in two dimensions  

Here mass of small element is dm =  dS 

and moment of inertia is I = 
S

2
mdd   

or      I = 
S

2dρ dS 

where dS = surface area of small element  

(iii)   M.I. in one dimension  

Consider a body (a line or curve) in one dimension. Consider a 

small element of length ds and mass dm. Then mass of small 

element is  

 dm =  ds 

M.I. of small element = dm d
2
 



Mechanics  MAL-513 

DDE, GJUS&T, Hisar  7 |  

 

O 

2a 

A 

L 

x 
 x B 

  M.I. of body     I = 
s

2
mdd     

             or    I = 
s

2 dsdρ  

1.4 Examples based on Moment of inertia 

Example 1: - M.I. of a uniform rod of length ‘2a’ about an axis passing through one end and 

perpendicular to the rod 

 

 

 

 

 

 

 

Let M = mass of rod of length 2a.  

OL = axis of rotation passing through one end A and  to rod. 

   Mass per unit length of rod = 
a2

M
 

Consider a small element of breadth x at a distance „x‟ from end A.  

  Mass of this small element = xδ
a2

M
 

 M.I. of small element about axis OL or AL = 
a2

M
 x

2 
x  

 M.I. of rod about OL = 
a2

0
a2

M
x

2
 dx 

 I = 

a2

0

3

3

x

a2

M








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Example 2:- M.I. of a rod about an axis passing through mid-point and perpendicular to rod 

 

 

 

 

 

 

 

 

 

Here LL is the axis of rotation passing through mid-point „O‟ of rod having length 2a. Consider a small 

element of breadth x at a distance „x‟ from mid-point of rod O.        

  Mass of this small element = xδ
a2

M
 

   M.I. of small element about LL = 
a2

M
 x

2 
x  

   M.I. of rod about LL = 


a

a

2dxx
a2

M
 

  ILL =  









a

0

a

0

3
2

3

x

a

M
dxx

a2

M2
 

             = 
3

Ma
a

a3

M 2
3   

 ILL = 2Ma
3

1
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Example 3: - M.I. of a rectangular lamina about an axis (line) passing through centre and parallel 

to one side 

 

 

 

 

 

 

 

 

Let ABCD be a rectangular lamina of mass „M‟ and NL be the line about which M.I. is to be calculated.  

Let AB = 2a, BC = 2b 

Then area of the rectangular lamina ABCD is = 4ab 

    Mass per unit area of lamina = 
ab4

M
  

Consider an elementary strip PQ of length (BC = 2b) and breadth x and at a distance „x‟ from G and 

parallel to AD.  

  Mass of elementary strip = 
ab4

M
. 2b x 

         = 
a2

M
x 

M.I. of this strip about NL  = Mass(
3

b2

 of strip) 

        = 
3

b
.xδ

a2

M 2

 

    M.I. of rectangular lamina about NL 

         = 


a

a

2

xδ
3

b

a2

M
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Example 4: - M.I. of rectangular lamina about a line perpendicular to lamina and passing through 

centre 

 

 

 

 

 

 

 

 

Let GL = axis of rotation passing through centre „G‟ and  to lamina ABCD. Consider a small element 

of surface area  S = x y 

Here  distance of small element from axis GL is d = 22 yx   

 Mass of small element =  x y 

M.I. of this small element about GL 

  =  x y (x
2
 + y

2
) 

 M.I. of lamina =  
 

b

b

a

a

ρ (x
2
 + y

2
) dx dy 

      = 4 
b

0

a

0

2x( + y
2
) dx dy 

      = 4   












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




b
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a
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2
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      = 
3

abρ4
)bba(

3

aρ4 32  (a
2
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2
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   I = 
3

M
(a

2
 + b

2
)   [using mass of lamina M = 4 ab] 

1.5 Moments and products of inertia about co-ordinate axes 

(I)     For a particle system  

 

 

 

 

 

 

 

 

 

Consider a single particle P of mass „m‟ having co-ordinates (x, y, z). 

Here  d =  distance of particle P of mass m from z-axis 

Then    d = PQ = OP = 22 yx   

Therefore, M.I. of particle of mass „m‟ about z-axis is 

   = md
2
 = m (x

2
 + y

2
) 

 M.I. of system of particles about z-axis is 

 IOz = md
2
 = m(x

2
 + y

2
) 

And Standard notation for M.I about z-axis is C, i.e., C = m (x
2
 + y

2
) = IOz 

Similarly, we can obtain M. I. about x and y-axis which are denoted as under: 

About x-axis, A = m (y
2
 + z

2
) = IOx 

About y-axis, B = m (z
2
 + x

2
) = IOy 

Product of Inertia 

The quantities   
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 D =  myz 

 E =  mzx     and  

 F =  mxy  

are called products of inertia w.r.t. pair of axes (Oy, Oz), (Oz, Ox) and (Ox, Oy) respectively.  

(II)    For a continuous body  

The M.I. about z-axis, x-axis and y-axis are defined as under  

 C =  
V

22 )y(xρ dx dy dz 

 A 
V

ρ (y
2
 + z

2
) dx dy dz 

 B 
V

ρ (z
2
 + x

2
) dx dy dz 

Similarly, the products of inertia w.r.t. pair of axes (Oy, Oz), (Oz, Ox) and (Ox, Oy) respectively are as 

under  

 dVxyρF;dVzxρE;dVyzρD
VVV

   

For laminas in xy plane, we put z = 0, then  

A = 
S

ρy
2
 dxdy 

B = 
S

ρx
2
 dx dy 

C = 
S

ρ (x
2
 + y

2
) dxdy 

D = E =  0,   F = 
S

ρxy dx dy 
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1.6 M.I. of a body about a line (an axis) whose direction cosines are <, , >  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let â  is a unit vector in axis OL whose direction cosines are < , ,  >. Then  

 k̂νĵμîλâ           ...(1)  

Let P (x, y, z) be any point (particle) of mass of the body.  

 

Then its position vector r


 is given by  

 k̂zĵyîxrOP 


       …(2) 

Now  distance of P from OL is  

 d = PN = OP sin = |âr| 


      …(3) 

 d = )k̂νĵμî(λ)k̂zĵyî(x   

    = |(y  z) |k̂)yλxμ(ĵ)xνzλ(î   

    = 222 )yλxμ()xνzλ()zμyν(   

 d = xyλμ2xzλν2yzμν2)y(xν)x(zμ)z(yλ 222222222   

r

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Therefore, M.I. of body about an axis whose direction cosine are  , ,  is 

 )yx()xz()zy({mI 222222222
OL   

 2yz  2xz  2 xy} 

 IOL = A
2
 + B

2
 + C

2
  2D  2E  2F 

 

1.7 Kinetic Energy (K.E.) of a body rotating about the origin O 

Let axis of rotation be OL  through O, then angular velocity about OL is âww


. 

Then K.E., T = 
2

1
m )v.v(


 

           = 
2

1
m | 2|v


 

 T = ]râwrwv[w|râ|Σm
2

1 22 



  

     = 2w
2

1
  md

2
             [using equation (3)] 

 T = 
2

1
w

2
 IOL  

This is the required expression for kinetic energy in terms of moment of inertia.  

1.8 Parallel axis theorem  

Statement: - For a body of mass „M‟, we have  

 C = C + Md
2 

 , 

where C = M.I. of body about a line GL through C.G. (centre of mass) and parallel to z-axis;  

C = M.I. of body about z-axis (i.e. a line parallel to GL) and at a distance „d‟ from GL.  
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Proof: 

 

    

 

 

 

 

 

 

 

 

 

 

 

Let M = Mass of body and P is any point whose co-ordinates w.r.t. Oxyz are (x,y,z), G is the centre of 

mass whose co-ordinates w.r.t. Oxyz are )z,y,x( .   

Let us introduce a new co-ordinate system Gxyz through G and Co-ordinates of P w.r.t. this system are 

(x,y,z). Let Gr


 be the position vector of G and ir


 be the position vector of mass mi w.r.t. Oxyz system. 

Now by definition of centre of mass of body, 

 
M

rΣm
r ii
G



  

When centre of mass concides with origin at G with respect to new co-ordinates system Gxyz, we have 

Gr


 = 0. Therefore 

 
M

rΣm ii



 = 0       0rmΣ ii 


  

  0
M

'mzΣ
,0

M

'myΣ
,0

M

'xmΣ
  

where    k̂z'ĵy'îx'r 


      and  k̂zĵyîxr 


 

So, we have  
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 m x = my = mz = 0      …(1) 

Now d
2
 = (GN)

2
 = (OG)

2
  (ON)

2
 = 2222 zzyx   

      = 22 yx          …(2) 

Co-ordinates of P w.r.t. (Ox, Oy, Oz) axes are (x, y, z) 

Co-ordinates of P w.r.t. (Gx, Gy, Gz) axes are (x, y, z) 

Then x = ,y'yy,x'x   z = z  + z 

Thus, M.I. about z-axis is   

 C = m (x
2
 + y

2
) 

     = m [( ])'yy()'xx 22   

       C = m [ ]y'y2y'yx'x2x'x 2222   

     = m (x
2
 + y

2
) + m ( x2)yx 22  mx + y2 m y 

 C = m (x
2
 + y

2
) + )yx( 22   m + 0    [from (1)] 

 C = C + Md
2
    [using (2) and m = M, total mass] 

Similarly, M.I. about x and y-axis are given by 

  A = A + Md
2
 

  B = B + Md
2
 

where d is perpendicular distance of P from x and y-axis. 

For Product of Inertia  

 Here Product of Inertia w.r.t. pair (Ox, Oy) is  

F = mxy = m ( )y'y()x'x   

    = m ( )'y'x'yxy'xyx   

    = m x y + yy'ΣmxΣmyx  m x 

    = F + M yx  + 0    [using (1)] 

 F = F + M yx  

Similarly, for products of Inertia w.r.t. pair (Oy, Oz) and (Oz, Ox) respectively, we have        D = D + M

zy     and    E = E + xzM  
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1.9 Perpendicular axis theorem  

(For two dimensional bodies mass distribution)  

Statement: - The M.I. of a plane mass distribution (lamina) w.r.t. any normal axis is equal to sum of the 

moments of inertia about any two  axis in the plane of mass distribution (lamina) and passing through 

the intersection of the normal with the lamina.  

Proof: 

Let Ox, Oy are the axes in the plane of lamina and Oz be 

the normal axis, i.e., xy is the plane of lamina.  

Let C is the M.I. about  axis, i.e., Oz axis  

Here to prove   C = A + B 

By definition, M.I. of plane lamina about z-axis, 

 C = 
S

ρ (x
2
 + y

2
) dS    [for a continuous body]   

    = 
S

ρx
2
 dS + 

S

ρy
2
 dS 

 C = B + A 

For mass distribution,  

 C = m (x
2
 + y

2
) = m x

2
 + my

2
 

 C = B + A 

For two dimensional body,   D = E = 0 and F = mxy   

Converse of perpendicular axis theorem: 

Given     C = A + B 

To prove it is a plane lamina. 

Proof: - Here A = m (y
2
 + z

2
) 

 B = m (z
2
 + x

2
),  C = m (x

2
 + y

2
) 

Now given C = A + B 

  m (x
2
 + y

2
) = m (y

2
 + z

2
) + m (z

2
 + x

2
) 

            = m (y
2
 + 2z

2
 + x

2
) 

 mx
2
 + my

2
 = my

2
 + 2mz

2
 + mx

2
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L 

 2mz
2
 = 0   

       mz
2
 = 0 for all distribution of mass.   

For a single particle of mass „m‟, 

mz
2
 = 0   z = 0 as m  0 

  It is a plane mass distribution or it is a plane lamina.  

1.10 Angular momentum of a rigid body about a fixed   

  point and about a fixed axis  

The turning effect of a particle about the axis of rotation is called angular momentum. 

Let O be the fixed point and OL be an axis passing through the fixed point. 

w


 = angular velocity about OL  

r


  = position vector of P (x, y, z) 

 îxOPr 


 + k̂zĵy   

Also linear velocity of P is,  rwv


                                      ........(1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

The angular momentum of body about O is  

O 

 P(m) 
 

(fixed 

point) 
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 )]rw(mr[Σ)vmr(ΣH


      …(2) 

 


H  = m [ )]rw(r


  

     = m ]r)w.r(w)r.r[(


        [  A× (B  C) = (A. C) B  (A . B) C] 

     = m [ ]r)w.r(wr2 
  

 r)w.r(Σmw)rm(ΣH 2 
      …(3) 

If  k̂hĵhîhH 321 


      

and k̂wĵwîww 321 


      …(4) 

Then zwywxww.r 321 


 

 From (3), we have 

 h1 )k̂wĵwîw()rmΣ(k̂hĵhî 321
2

32   

  m (w1x + w2y + w3z) )k̂zĵyîx(   

Equating coefficients of î  on both sides,  

 h1 = m (x
2 

+ y
2
 + z

2
) w1  m (w1x + w2y + w3z) x 

     = m (y
2
 + z

2
) w1 + m x

2
w1  mw1 x

2
   m (w2y + w3z) x 

     = m (y
2
 + z

2
) w1  (m xy) w2  (m xz) w3 

   h1 = Aw1  Fw2  Ew3 

Similarly,   

h2 = Bw2  Dw3  Fw1 

  h3 = Cw3  Ew1  Dw2     …(5) 

 

























































3

2

1

3

2

1

w

w

w

CDE

DBF

EFA

h

h

h

 

Inertia matrix (symmetric 3  3 matrix)  

1.11 Principal axis and their determination  
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Definition: - If the axis of rotation w


 is parallel to the angular momentum H


, then the axis is known as 

principal axis.  

If  âwâ|w|w 


 

 wnHâ|H|H


 , where n is a constant  

 H = nw 

1.11.1 Theorem: - Prove that in general, there are three principal axes through a     point of rigid body.  

Proof: For principal axis,  

 nwHwnH 


       …(1) 

Let âHH


,    âww


 

where â  is a unit vector along principal axis of body through O. 

By definition of H


, 

 )vmr(ΣH


  

 r)w.r(mΣw)mrΣ(H 2 
  

Using  wnH


 , we get 

 r)w.r(mΣw)mrΣ(wn 2 
  

Using  âww


, we have 

n r)â.wrΣm(âwΣmrâw 2 
  

Cancelling w on both sides and rearranging, we get  

 r)â.r(Σmân)mr(Σ 2 
       …(2) 

Let k̂ĵîâ,k̂zĵyîxr 


     …(3) 

where <, , > are direction cosine of principal axis.  

Then using (3) in (2), we have 

 (mr
2
  n) ( )k̂νĵμî   = m [ (x + y + z) ( )k̂zĵyîx  ] 

Equating coefficients of î  on both sides,  

 [m (x
2
 + y

2
 + z

2
)n]  = m(x

2
 + xy + xz) 

 [m (y
2
 + z

2
)n] = m [xy + xz]     [canceling m x

2
 on both sides]  
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  (A  n)  F  E = 0 

Similarly, (B  n)  D  F = 0     …(4) 

  (C  n)  E  D = 0 

or  (A  n)  F  E = 0 

  F + (B  n)  D  = 0     …(5) 

  E  D + (C  n) = 0 

Equation (5) has a non-zero solution only if  

 

nCDE

DnBF

EFnA







 = 0      …(6) 

This determinental equation is a cubic in n and it is called characteristic equation of symmetric inertia 

matrix. This characterstic equation has three roots n1, n2, n3 (say), so n1, n2, n3 are real.  

Corresponding to n = (n1, n2, n3) (solving equation (5) or (6) for <, , >), let the values of (, , ) be 

 (1, 1, 1)  n = n1 

 (2, 2, 2)  n = n2 

 (3, 3, 3)  n = n3 

These three sets of value determine three principal axes 321 â,â,â  given by k̂νĵμîλâ pppp   , where 

p = 1, 2, 3. 

1.11.2 Theorem: - Three principal axes through a point of a rigid body are mutually orthogonal. 

Proof: Let the three principal axes corresponding to roots n1, n2, n3 of characteristic equation  

  

nCDE

DnBF

EFnA







 = 0 

be 321 â,â,â . 

Let 321 n̂,n̂,n̂  are all different. 

Then from equation,  

 (m r
2
n) r)â.r(Σmâ


  
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O 

   
  

 

  

We have 

 (mr
2
  n1) r)â.r(Σmâ 11


       …(1) 

 (mr
2
  n2) r)â.r(Σmâ 22


       …(2) 

 (mr
2
  n3) r)â.r(Σmâ 33


       …(3) 

Multiply scalarly equation (1) by 2â  and equation (2) with 1â  and then substracts, we get 

 (n1  n2) 21 â.â  = 0 

 21 â.â  = 0   as n1  n2 

Similarly 1332 â.âand0â.â   = 0 

 321 â,â,â  are mutually orthogonal.  

Remarks: (i) If n1 n2  n3 , then there are exactly three mutually  axis through O.    

(ii) If n2 = n3 (i.e. two characteristic roots are equal). There 

is one principal axis corresponding to n1 through O. Then 

every line through O and  to this 1â  is a principal axis. 

Infinite set of principal axis with the condition that 1â  is 

fixed.  

(iii) If n1 = n2 = n3, then any three mutually  axes through 

O (centre of sphere) are principal axes. 

1.12 Moments and products of Inertia about principal axes  

  and hence to find angular momentum of body 

Let 321 â,â,â  are the principal axes.   

Let us take co-ordinates axes along the principal axes.  

           321 âZâYâXOPr 


 

 r
2
 = X

2
 + Y

2
 + Z

2
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 Y 

 

 

 

 X 

 O 

 

  P(X,Y,Z) 

Z 
 

 

 

 

 

 

 

 

 

 

 

 

 

From equation,  

 (mr
2 
 n) r)â.r(Σmâ


  

We have  

 (mr
2
  n1) r)â.r(Σmâ 11


       …(1) 

 (mr
2
  n2) r)â.r(Σmâ 22


      …(2) 

 (mr
2
  n3) r)â.r(Σmâ 33


       …(3) 

From (1), we have 

  (mr
2
  n1) ]âZâYâ[X  ]â.)âZâYâ[(XΣmâ 32113211   

   = m X ( )âZâYâX 321   

Equating coefficients of 321 â,â,â , 





















 ZXm0

YXm0

Xmn)ZY(Xm 2
1

222

    …(4) 

or n1 = m (Y
2
 + Z

2
) = A* 

and F* = 0,     E* = 0 
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Similarly, from (2) and (3), we get  

 n2 = B*,  D* = 0,  F* = 0 

and n3 = C*, E* = 0, D* = 0 

where A*, B*, C* are M.I. and D*, E*, F* are product of Inertia about principal axes.  

Inertia matrix for principal axes through O is  

  
















3

2

1

n00

0n0

00n

 = 
















*C00

0*B0

00*A

 

Expression for angular momentum ( H


): 

Here D* = E* = F* = 0, then from equation,  

 h1 = Aw1  Fw2  Ew3 

We have  

 h1 = A*w1  F*w2  E* w3 

 h1 = A*w1     [ F* = E* = 0] 

Similarly, h2 = B* w2 ,  h3 = C* w3 

  332211 âhâhâhH 


 

         = A* w1 33221 âw*Câw*Bâ   

where (w1, w2, w3) are components of angular velocity about ( 321 â,â,â ).   

A*, B*, C* are also called principal moments of inertia.  

Definition: Three mutually  lines through any point of a body which are such that the product of inertia 

about them vanishes are known as principal axes.  

1.13 Momental Ellipsoid 

We know that M.I., IOL of a body about the line whose d.c.‟s are  <, , > is 

IOL = I = A
2
 + B

2
 + C

2
  2D  2E  2F   …(1) 
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 x 

 y  O 

 P(x,y,z) 

 z 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let P (x, y, z) be any point on OL and OP = R, then  

k̂zĵyîx)k̂νĵμî(λRR 


 

  = 
R

z
ν,

R

y
μ,

R

x
     …(2) 

Now let P moves in such a way that IR
2
 remains constant, then from (1) and (2), we get  

 Ax
2
 + By

2
 + Cz

2
  2Dyz  2Ezx  2Fxy = IR

2
 = constant 

Since coefficients of x
2
, y

2
, z

2
 i.e. A, B, C all are positive, this equation represents an ellipsoid known as 

momental ellipsoid.  

Example 1: - A uniform solid rectangular block is of mass „M‟ and dimension 2a  2b  2c. Find the 

equation of the momental ellipsoid for a corner „O‟ of the block, referred to the edges through O as co-

ordinates axes and hence determine M.I. about OO where O is the point diagonally opposite to O.  

 

 

 

R


L < , , ν >  
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x 

 z 

 (0, 0, 2c) 

   2c 

 2a 

(2a,0,0) 

O (0,0,0) 

       2b (0,2b,0) 

    y 

  

O (2a,2b,2c) 

 

Solution:  

 

 

  

 

 

 

 

 

 

Taking x, y, z axes along the edges of lengths 2a, 2b, 2c, we obtain  

          A =  
V

22 dV)z(yρ  

      A =   
2a

0

2b

0

2c

0

ρ (y
2
 + z

2
) dz dy dx 

     =   









2a

0

2b

0

2c

0

3
2

3

z
zyρ dy dx 

     =    









2a

0

2b

0

32 8c
3

1
2cy dy dx 

     = . 2c   









2a

0

2b

0

22 c
3

4
y  dy dx 

                = . 2c  









2a

0

2b

0

2
3

dxyc
3

4

3

y
 

     = 
a2

0

3b8(
3

c2ρ
+ 4c

2
 2b) dx 
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     =   
2a

0

22 dx)c(b8b
3

2c
 

        A = 
3

bc16
(b

2
 + c

2
) 2a = (8abc ) 

3

4
(b

2
 + c

2
) 

 A = 
3

M4
(b

2
 + c

2
)    [ here M = 8abc  ] 

Similarly, B = )ba(
3

M4
C),ac(

3

M4 2222   

Now  D =    
V

2a

0

2b

0

2c

0

yzρdVyzρ  dz dy dx 

     =    






2a

0

2b

0

2c

0

2

dxdy
2

z
y  

    =  
2a

0

2b

0

2 )(4cy
2

ρ
 dy dx 

      D = 2c
2
    










2a

0

2b

0

2a

0

2b

0

2
2

2

y
ρ2cdxdyy dx 

    = c
2
   

a2

0

a2

0

222 dxρcb4dxb4  

   = 4b
2
c

2
. 2a  

      D = (8abc ) bc = M bc 

Similarly, E = Mca,    F = Mab 

Using these in standard equation of momental ellipsoid, we get 

  
3

M4
[(b

2
 + c

2
) x

2
 + (c

2
 + a

2
) y

2
 + (a

2
 + b

2
) z

2
] 

   2M [bc yz + ca zx + ab xy] = IR
2
    …(1) 

which is required equation of momental ellipsoid. 

To find M.I. about OO :- 

Using x = 2a, y = 2b, z = 2c as O(2a, 2b, 2c) 
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and R
2
 = 4(a

2
 + b

2
 + c

2
) 

 From (1), we have 

IOO = 
)cb(a4

)baacc(b8M]4c)b(a4b)a(c4a)c[(b
3

4M

222

222222222222222




 

  IOO = 












)cba(4

)cbbaca(3)ac2cb2ba2(2

3

M8
222

222222222222

 

   IOO = 
)cba(

)baaccb(

3

M2
222

222222




 

1.14 Check your progress 

1. Give definition of moment of inertia of a system consisting of n particles. 

2. State perpendicular axis theorem for a two dimensional mass distribution. 

3. What is Inertia matrix of order three? 

4. What do you mean by principal axes? 

5. Write the equation of momental ellipsoid. 

1.15 Summary 

In this chapter we have discussed about Moments and products of Inertia, theorems of parallel and 

perpendicular axes, angular momentum of body, principal axes, and momental ellipsoid. 

1.16 Keywords 

Moments and products of Inertia, Theorems of parallel and perpendicular axes, angular momentum, 

principal axes, momental ellipsoid 

1.17 Self-Assessment Test 

1. Give a detailed account of moments and products of inertia. 

2. Find the Moments of Inertia about co-ordinate axes for a uniform solid cuboid of mass M and 

length of edge „a‟. 
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3. Determine the Moments and Products of Inertia about principal axes for a body and hence deduce 

the expression for angular momentum of the body. 

4. Explain the term momental ellipsoid. 

 

1.18 Answers to check your progress 

1. Moment of inertia of a body about a given axis is defined as the sum of the products of masses of 

all the particles of the body and squares of their respective perpendicular distances from the axis of 

rotation. So  





n

1i

2
iidmI , where n is the number of particles of the body. 

2. Perpendicular axis theorem for a two dimensional mass distribution states that M.I. of a plane mass 

distribution (lamina) w.r.t. any normal axis is equal to sum of the moments of inertia about any two 

 axis in the plane of mass distribution (lamina) and passing through the intersection of the normal 

with the lamina.  

3. The inertia matrix is defined as  























CDE

DBF

EFA

 

where symbols have their usual meanings. 

4. If the axis of rotation w


 is parallel to the angular momentum H


, then the axis is known as 

principal axis. 

Alternate definition: Three mutually  lines through any point of a body which are such that the 

product of inertia about them vanishes are known as principal axes. 

5. The equation given below represents a momental ellipsoid: 

 Ax
2
 + By

2
 + Cz

2
  2Dyz  2Ezx  2Fxy = IR

2
 = constant, where symbols have their usual 

meanings. 

1.19 References/Suggestive Readings 
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Chapter - 2 

Moment of Inertia – 2 

Structure: 

2.0 Learning Objectives 

2.1 Introduction 

2.2 Equimomental Systems 

2.3 Necessary and sufficient conditions for two systems to be equimomental  

2.4 Examples based on equimomental systems 

2.5 Coplanar distribution 

2.6 Examples based on Coplanar distribution 

2.7 Check Your Progress 

2.8 Summary 

2.9 Keywords 

2.10 Self-Assessment Test 

2.11 Answers to check your progress 

2.12 References/ Suggestive Readings 

2.0 Learning Objectives 

In this chapter the reader will learn about equimomental systems and coplanar distributions. 

2.1 Introduction 

In this chapter, we shall be concerned with the equimomental systems, necessary and sufficient 

conditions for two systems to be equimomental and coplanar distributions. Some examples based on the 

equimomental systems and coplanar distributions are discussed in detail. 

2.2 Equimomental Systems 

Two systems are said to be equimomental if they have equal M.I. about every line in space.  

2.3 Necessary and sufficient conditions for two systems to be 

equimomental  



Mechanics  MAL-513 

DDE, GJUS&T, Hisar  32 |  

 

Theorem:- The necessary and sufficient conditions for two systems to be equimomental are : 

(i) They have same total mass.  

(ii) They have same centroid. 

(iii) They have same principal axes.  

Proof: - Part A: The conditions (i) to (iii) are sufficient. Here we assume that if (i) to (iii) hold, we shall 

prove that two systems are equimomental. Let M be the total mass of each system.  

     

 

 

 

 

 

 

Let G be the common centroid of both the system. Let A*, B*, C* be the principal M.I. about principal 

axes through G for both the systems. Let  be any line in space with d.c. <, , >. We draw a line  

parallel to  passing through G. Let h =  distance of G from .  

M.I. about  for both the system is  

  I = A*
2
 + B*

2
 + C*

2
 

[ Product of inertia about principal axes i.e. D* = E* = F* = 0] 

So by parallel axes theorem, the M.I. of both the system about  is  

  I = I + Mh
2
 

 I = A*
2
 + B*

2
 + C*

2
 + Mh

2
 

Hence both the systems have same M.I. about any line of space. So they are equimomental.  

Part B: - The conditions are necessary. Here we assume that the two systems are equimomental and 

derive condition (i) to (iii). Let M1 and M2 be the total masses of the two systems respectively and G1 & 

G2 are their centroid respectively. 

 

M 

h 

M 

 (<, , >) z 

y 
x 

G 

I system 
    II system 

 (<, , >) 
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   
h 

M2 

G2 G1 

M1 

H2 

M 

G2 G1 

H1 

M 

Condition (i)  

 

 

 

 

 

Since the systems are equimomental, i.e., they have same M.I., „I‟ (say) about line G1G2 (in particular). 

Let  be the line in space which is parallel to G1 G2 at a distance h. Then by parallel axes theorem, M.I. 

of Ist system about  = I + M1h
2
 and M.I. of IInd system about  = I + M2h

2
. 

Since the two systems are equimomental, therefore we have,  

 I + M1h
2
 = I + M2h

2
 

 M1 = M2 = M (say) 

This implies that both the systems have same total mass.  

Condition (ii) 

 

 

 

 

 

 

Let G1H1 and G2H2 be two parallel lines each being  to G1 G2. Let I* be the M.I. of either system about 

a line G1H1 and  to G1G2 (through G1). 

Using parallel axes theorem,  

M.I. of Ist system about G2H2 = I* + M (G1G2)
2
 

M.I. of IInd system about G2H2 = I*  M (G1G2)
2
 

As the systems are equimomental, therefore  

 I* + M (G1G2)
2
 = I*  M (G1G2)

2
 

 (G1G2)
2
 = 0 as M  0 
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 L 

B A  G 

 
    

 

 G1 = G2 = G (say) 

 Both the systems have same centroid.  

Condition (iii):- Since the two systems are equimomental, they have the same M.I. about every line 

through their common centroid. Hence they have same principal axes and principal moments of inertia. 

2.4 Examples based on equimomental systems 

Example 1:- Show that a uniform rod of mass „M‟ is equimomental to three particles situated one at 

each end of the rod and one at its middle point, the masses of the particle being 
6

M
,

6

M
 and 

3

M2
 

respectively.  

Solution: - Let AB = 2a is the length of rod having mass „M‟. 

 

 

 

 

 

 

Let m, M  2m, m are the masses at A, G, B respectively. This system of particles has same centroid and 

same total mass M. This system of particles has the same M.I. (i.e. each zero) about AB, passing through 

common centroid „G‟. Therefore, systems are equimomental.  

To find m: - We take M.I. of two systems (one system is rod of mass „M‟) and other system consists of 

particles. 

M.I. of rod about GL = 
3

Ma2

 

M.I. of particles about GL = ma
2
 + 0 + ma

2
  

                 = 2ma
2
 

As systems are equimomental, 

 2ma
2
 = 

3

Ma2

 

 m = 
6

M
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  A 

B   C  x 

  x 

     C  D B 

  a 

and M  2m = M
3

M2

3

M
  

So masses of particles at A, G, B are  
6

M
,

3

M2
,

6

M
  respectively.  

Example 2:- Find equimomental system for a uniform triangular lamina.  

Solution: -  

 

 

 

 

 

 

 

 

Let M = Mass of  lamina. 

Let  distance of A from BC is = h   

i.e.  AD = h 

First find M.I. of  lamina ABC about BC. 

M = 
2

1
ah ,     where  = surface density of lamina 

    = 










2

ah

M
    (density = Mass/area)  

Now  
h

xh

BC

'C'B 
  

 BC = 
h

)xh(a 
 = length of strip  

Area of strip BC = xδ
h

)xh(a 
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  D 

D 

  B 

 h2 

h1 

 A 

  G 

   

   
h3 

 

  C 

Mass of strip = 
h

xδ)xh(a
.

2

ah

M 









 

            = 
2h

M2
(h  x) x 

       M.I. of strip BC about BC = 
2h

M2
(hx) x

2 
x 

  M.I. of  lamina ABC about BC 

  = 
h

0
2h

M2
(h  x) x

2
 dx 

  = 

h

0

43

2 4

x

3

hx

h

M2








  

  = 
12

h

h

M2

3

h

4

h

h

M2 4

2

44

2














 

 I = 
6

1
Mh

2
       …(1) 

Now we apply this result to general case of finding M.I. about any line  in the plane of lamina.  

 

 

  

 

 

 

 

 

 

Let h1, h2, h3 are length of  drawn from corners (or points) A, B, C respectively of ABC such that h1 < 

h2 < h3  . 

We extend BC to meet a point „D‟ on line . We draw a line  through A and parallel to . 
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Distances of C and B from  are  h3  h1,  h2  h1 

Let M1 is the mass of ACD and M2 is the mass of ABD 

This   M = M1  M2 

and 

)h(hAD
2

1
σ

)h(hAD
2

1
σ

M

M

12

13

2

1




  

 
12

13

2

1

hh

hh

M

M




  

 
23

21

12

2

13

1

hh

MMM

hh

M

hh

M










 

 M1 = 
23

12
2

23

13

hh

)h(hM
M,

hh

)hM(h









    …(2) 

We denote I as the M. I. of ABC about  and I as the M. I. of ABC about  and IG as the M.I. of 

ABC about a line parallel to  or  through centre of mass (G) of ABC. So then  

I = M.I. of ACD  M.I. of ABD 

    = 
6

1
M1 (h3  h1)

2
  

6

1
M2 (h2  h1)

2
 

    = 












23

3
12

3
13

hh

)hh()hh(

6

M
    [using equation (2)] 

    = 












)hh(

)hh(

6

M

23

23  [(h3  h1)
2
 + (h2  h1)

2
 + (h3  h1) (h2  h1)] 

[ a
3
  b

3
 = (a b) (a

2
 + b

2
 + ab)]  

     I = 
6

M
[ ]hhhhhhhhh2hhhh2hh 2

131213221
2
1

2
231

2
1

2
3   

              = ]hh3hh3hhhhh3[
6

M
211332

2
3

2
2

2
1     …(3) 

Now  distance of G from  = 
3

)hhh( 321 
    …(4) 
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and  distance of G from  = 










1

321 h
3

hhh
    …(5) 

Using parallel axes theorem, we have 

 I = IG + 
9

M
(h1 + h2 + h3)

2
      …(6) 

and  I = IG + 
9

M
(h2 + h3  2h1)

2
      …(7) 

Now (7)  IG  =  I  
9

M
(h2 + h3  2h1)

2
     …(8) 

Put equation (8) in (6), we have 

 I  =  I + 
9

M
(h1 + h2 + h3)

2
  

9

M
(h2 + h3  2h1)

2
 

    =  2
3

2
2

2
1 hhh3[

6

M
h2 h3  3h3h1  3h1h2] 

    + 
9

M
(h1 + h2 + h3)

2
   

9

M
(h2 + h3 2h1)

2
     [using (3)] 

    = 132
2
3

2
2

2
1 h3hhhhh3[

6

M
 h3  3h1h2] + 

9

M
[ 2

3
2
2

2
1 hhh   + 2h1h2   

   + 2h2h3 + 2h3h1  3132
2
1

2
3

2
2 hh4hh2h4hh  +4h1h2] 

 I = 
2
3

2
2

2
1 hhh[

6

M
 + h1 h2 + h2 h3 + h1 h3] 

 I = 


















 








 








 
2

13

2

32

2

21

2

hh

2

hh

2

hh

3

M
 

    = M. I. of mass 
3

M
 placed at mid-point of A and B about l  + 

       M.I. of mass 
3

M
 placed at mid-point of B and C about l  + 

                   M.I. of mass 
3

M
placed at mid-point of C and A about l  .  
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x 

z 

  y 

5 (0,2a,2a) 

6 

11 

10   2(0,2a,0) 

7 

12 7 

(2a,2a,2a) 

 
Z 

X 
Y 

G 
(a,a,a) 

8 

9 

1 

 (2a,0,0) 4 

2 1 
O 

3 

  (2a,0,2a) 6   

5 

i.e. which is same as M.I. of equal particles of masses 
3

M
 at the mid-points of sides of ABC. 

Example 4:- Find equimomental system for a uniform solid cuboid.  

OR 

Show that a uniform solid cuboid of mass „M‟ is equimomental with  

(i) Masses 
24

M
 at the mid-points of its edges and 

2

M
 at its centre. 

(ii)  Masses 
24

M
 at its corners and 

3

M2
 at its centroid.   

Solution:-  

 

 

 

 

 

 

 

 

 

Let length of edge of cuboid = 2a 

Coordinates of mid-point of edges of cuboid are 

 1 = (a, 0, 0), 2 = (0, a, 0), 3 = (0, 0, a), 4 = (2a, a, 0), 5 = (a, 2a, 0), 

 6 = (0, 2a, a), 7 = (0, a, 2a), 8 = (a, 0, 2a), 9 = (2a, 0, a), 10 = (2a, 2a, a), 

 11 = (a, 2a, 2a), 12 = (2a, a, 2a) 

Let G be centroid and  is the density of cuboid, then 

M = V = (2a)
3
 = 8a

3
          …(1) 

Now we find M.I. and Product of Inertia of cuboid about co-ordinates axes. 

Therefore,  A =  M.I. of cuboid about x-axis 
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      =    
V

2a

0

2a

0

2a

0

22 (ρdV)z(yρ y
2
 + z

2
) dx dy dz 

      = 
3

8
)aρ8(a

3

8 32  Ma
2
     [using (1)] 

Similarly,   B = M. I. of cuboid about y-axis = 
3

8
Ma

2
 

                   C = M.I. of cuboid about z-axis = 
3

8
 Ma

2
 

Now   D = product of inertia of cuboid w.r.t. pair (Oy, Oz) 

 D =   
2a

0

2a

0

2a

0

ρyz dx dy dz = (8a
3
 ) a

2
 

 D = Ma
2
 

Similarly,   E = F = Ma
2
  

(i) Now consider a system of particles in which 12 particles each of mass 
24

M
 are situated at mid-point of 

edges, i.e. at i (i = 1 to 12) and a particle of mass 
2

M
 at G. 

Total mass of this system = 12
2

M

24

M








 

         = M
2

M

2

M
  

 The two systems have same mass. Also the centroid of these particles at i and G is the point G itself 

which is centroid of cuboid. 

 The two systems have same centroid.   

Let A = M.I. of system of particles at (i  and  G) about x-axis 

           = m (y
2
 + z

2
) + 

2

M
(2a

2
) 

    A = 
24

M
[0 + a

2
 + a

2
 + a

2
 + 4a

2
 + 5a

2
 + 5a

2
 + 4a

2
 + a

2
 + 5a

2
 + 8a

2
 + 5a

2
] 
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     + 
2

M
(2a

2
) 

 A = 
3

8
Ma

24

64
Ma)a40(

24

M 222  Ma
2
 

Similarly, B = M.I. of system of particle about y-axis = m (z
2
 + x

2
) 

 B = 
3

8
Ma

2
 

Similarly, C = 
3

8
 Ma

2
 

Now  D = M.I. of system of particles w.r.t. (Oy, Oz) axes 

   = myz 

   = 
24

M
[0 + 0 + 0 + 0a

2
 + 0 + 2a

2
 + 2a

2
 + 0 + 0 + 2a

2
 + 4a

2
 + 2a

2
] + )a(

2

M 2
 

 D = 
22222 Maa

2

M
a

2

M
a

2

M
)a12(

24

M
  

Similarly,    E = F = Ma
2
 

 Both the systems have same M.I. and product of inertia referred to co-ordinate axes through O.  

Using parallel axes theorem, both systems (i.e. cuboid and particles) have identical moments and 

products of inertia referred to parallel axes through common centroid G. So both the systems have same 

principal axes and principal M.I. 

Therefore both the systems are equimomental.  

(ii) Now let A = M.I. of system of particles at (i and G) about x-axis  

        = 
24

M
(0 + 4a

2
 + 4a

2
 + 4a

2
 + 8a

2
 + 4a

2
 + 8a

2
) + 

3

2
M (2a

2
) 

        = 
24

M
(32 Ma

2
) + 

3

4
Ma

2
 = 

3

4
Ma

2
 + 

3

4
 Ma

2
 

 A = 
3

8
Ma

2
 

Similarly, B = C = 
3

8
Ma

2
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y 
y 

N 

  x 
  y 

    

O (0, 0) 
 x 

  x 
P(x,y) 

     (x,y) 

  L 

Also D = M.I. of system of particles w.r.t. (Oy, Oz) axes  

   = 
24

M
[0 + 0+ 0 + 0 + 4a

2
 + 0 + 4a

2
] + 

3

M2
(a

2
) 

   = 
2222 Ma

3

2
Ma

3

1
a

3

M2
Ma

24

8
  

 D = Ma
2
 

Similarly, E = F = Ma
2
  

 Both the systems have same M.I. and product of inertia referred to co-ordinate axes through O.  

Using parallel axes theorem, both systems (i.e. cuboid and particles) have identical moments and 

products of inertia referred to parallel axes through common centroid G. So both the systems have same 

principal axes and principal M.I. 

Therefore both the systems are equimomental.  

2.5 Coplanar distribution 

2.5.1 Theorem:- (i) Show that for a two dimensional mass distribution (lamina), one of the principal 

axes at O is inclined at an angle  to the x-axis through O such that tan 2 = 
AB

F2


 

where A, B, F have their usual meanings.  

(ii) Show that maximum and minimum values of M.I. at O are attained along principal axes.  

OR 

Theorem:- For a 2-D mass distribution (lamina), the value of maximum and minimum M.I. about lines 

passing through a point O are attained through principal axes at O.  

Proof:- 
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Let us consider an arbitrary particle of mass m at P whose co-ordinates w.r.t. axes  

through O are (x, y), then for mass distribution, we have 

M.I. about x-axis, i.e. A = my
2
 

  M.I. about y-axis, i.e. B = mx
2
     …(1) 

and Product of inertia F = mxy 

We take another set of  axes Ox, Oy such that Ox is inclined at an angle   with x-axis. 

Then equation of line Ox is given by 

  y = x tan 

 y cos   x sin  = 0       …(2) 

Changing  to  + 
2

π
,  the equation of Oy is  

  y sin   x cos  = 0 

 y sin  + x cos  = 0       …(3) 

Let P(x, y) be co-ordinates of P relative to new system of axes Ox, Oy, then  

PL = y = length of  from P on Ox 

 = 
θsinθcos

θsinxθcosy

22 


 

 = y cos   x sin        …(4) 

Similarly,   x = PN = length of  from P on Oy 

      = 
θsinθcos

θcosxθsiny

22 


 

      = y sin  + x cos       …(5) 

Therefore, 

 M.I. of mass distribution (lamina) about Ox is 

 IOx = my
2
 = m (y cos   x sin )

2
 

       =  m (y
2 

cos
2
 + x

2
 sin

2
  2xy sin  cos ) 

     IOx  = cos
2
  my

2
 + sin

2
  mx

2
  2 sin cos mxy 

       = A cos
2
 + B sin

2
  F sin 2     …(6) 
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Similarly, M.I. of mass distribution (lamina) about Oy is given by 

 IOy = A cos
2









θ

2

π
+ B sin

2








θ

2

π
 F sin2 








θ

2

π
 

       = A sin
2 
 + B cos

2 
 + F sin2     …(7) 

Product of inertia w.r.t. pair of axes (Ox, Oy), 

 Ixy = mxy 

       = m(y sin  + x cos ) (y cos  x sin ) 

 Ixy = sin cos my
2
  sin cos  mx

2
 

    sin
2
 mxy + cos

2
 mxy 

       = A sin cos  B sin cos + (cos
2
  sin

2
) F 

       = (AB) 
2

θ2sin
 + F cos2     …(8) 

The axes Ox, Oy will be principal axes if  

 Ixy = 0 

Using equation (8), we have 

 
2

1
(AB) sin2 + F cos2 = 0 

 tan 2 = 
AB

F2


 

  = 
AB

F2
tan

2

1 1




       …(9) 

This determines the direction of principal axes relative to co-ordinates axes. We shall now show that 

maximum/minimum (extreme) values of IOx, IOy are obtained when  is determined from (9). 

We rewrite, IOx and IOy as  

 IOx = 
2

1
B)(A

2

1
 [(B  A) cos 2 + 2 F sin 2]   …(10a) 

 IOy = 
2

1
(A + B) +

2

1
 [(B  A) cos 2 + 2 F sin 2]    …(10b) 

For maximum and minimum value of IOx, IOy, 
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 )(I
dθ

d
and0)(I

dθ

d
Oy'Ox'   = 0 

i.e. 
θd

d
[(B  A) cos 2 + 2F sin 2] = 0 

  (B  A) 2 sin 2 + 4F cos 2 = 0 

 tan 2 = 
AB

F2


       …(11) 

Similarly,   
θd

d
[(B  A) cos 2 + 2F sin 2] = 0 

     (B  A) 2 sin 2 + 4F cos 2 = 0 

   tan 2 = 
AB

F2


 

So extreme values of IOx and IOy are attained for  given by equation (11) already obtained in (9). 

Therefore, the greatest and least values of M.I. for mass distribution (lamina) through O are obtained 

along the principal axes.  

The extreme values are obtained as under: 

We have,  tan 2 = 
AB

F2

θ2cos

θ2sin


  

 
22 )AB(F4

1

AB

θ2cos

F2

θ2sin





  

 sin 2 = 
22 )AB(F4

F2


 

and cos 2 = 
22 )AB(F4

AB




 

Now from (10a), we have 

 IOx = 
2

1
(A + B)  

2

1
[(B  A) cos 2 + 2 F sin 2] 

Using values of cos 2 and sin 2 , we obtain the extreme values of IOx and IOy as under 
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y y 

4m 

O 
 

 2m 

       Q  

  m 

P  

  R  

3m   x 

  x 

    IOx = 
2

1
(A + B) 

2

1






















22

2

22 )AB(F4

F4

)AB(F4

)AB)(AB(
 

       = 
2

1
(A + B)  

2

1
 



















22

22

)AB(F4

F4)AB(
 

       = 
2

1
(A + B)  

2

1
])AB(F4[ 22   

Similarly, IOy = 
2

1
(A + B) + 

2

1
[

22 )AB(F4  ] 

2.6 Examples based on coplanar distribution 

Example 1:- A square of side „a‟ has particles of masses m, 2m, 3m, 4m at its vertices. Show that the 

principal M. I. at centre of the square are 2ma
2
, 3ma

2
, 5ma

2
. Also find the directions of principal axes.  

Solution:  

Taking origin O at the centre of square and axes as shown in the figure, we have 

 A = M.I. of system of particles about x-axis 

     = 


















 








 


4

1i

222
2
ii

2

a
m3

2

a
m2

2

a
mym + 4m

2

2

a








 

 A = 
2

5
ma

2
        …(1) 

   

 

 S 






 

2

a
,

2

a
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Now   B = mi xi
2
 = m

222

2

a
3m

2

a
2m

2

a

























 
+ 4m

2

2

a







 
 

 B = 
2

5
ma

2
        …(2) 

  C = B + A = 5ma
2
 

For a two-dimensional mass distribution, D = E = 0 and 

 F =  mi xi yi = m 














 























 















 







 

2

a

2

a
m4

2

a

2

a
m3

2

a

2

a
m2

2

a

2

a
 

 F = 22
2222

ma
2

3
ma

4

4ma

4

3ma

4

2ma

4

ma
  

 F = 
2

1
ma

2
 

Let Ox, Oy be the principal axes at O s. t. xOx = .  

Then, we have    IOx = A cos
2
  2F sin cos + B sin

2
   …(I)  

     IOy = A sin
2
 + 2F sin cos + B cos

2
 

and     Ixy = 
2

1
(A B) sin2 + F cos2 

Since Ox and Oy are principal axes, therefore Ixy = 0 

 
2

1
(AB) sin 2 + F cos 2 = 0     …(3) 

 tan 2 = 
AB

F2


 

Now (3)   cos 2 = 0     [ A = B = 
2

5
ma

2
] 

 2 = 
4

π
θ

2

π
  

 Diagonals OR and OS are principal axes.  

Therefore, 
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IOR = 














 









2

1

2

ma
2

2

1
ma

2

5 2
2 + 









2

1
ma

2

5 2
      [using equation (I)]  

 IOR = 3ma
2
 

and   IOS =  2ma
2   

  

































2

1
ma

2

5

2

1
ma

2

1
2.

2

1
ma

2

5
I 222

Oy'  

M.I. about z-axis is  C = B + A 

 C = IOR+ IOS = 3ma
2
 + 2ma

2
 

 C = 5ma
2
.  

2.7 Check Your Progress 

1. Define equimomental systems. 

2. State necessary and sufficient conditions for the two systems to be equimomental. 

3. Find equimomental system for a uniform solid cuboid of mass M. 

4. About which axes, the maximum and minimum values of M.I. at origin O for a two dimensional 

mass distribution (lamina) are attained? 

2.8 Summary 

In this chapter we have discussed about Equimomental systems, necessary and sufficient conditions 

for two systems to be equimomental, coplanar distributions. 

2.9 Keywords 

Equimomental systems, coplanar distributions 

2.10 Self Assessment Test 

1. Find Principal direction at one corner of a rectangular lamina of dimension 2a and 2b. 

2. Find equimomental system for a parallelogram or prove that parallelogram is equimomental with 

particles of masses M/6 at mid-points of sides of 
gm||  and 

3

M
 at the intersection of diagonals. 

2.11 Answers to check your progress 
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1. Two systems are said to be equimomental if they have equal M.I. about every line in space.  

2. The necessary and sufficient conditions for two systems to be equimomental are : 

(i) They have same total mass.  

(ii) They have same centroid. 

(iii) They have same principal axes.  

3. A uniform solid cuboid of mass „M‟ is equimomental with  

(i) Masses 
24

M
 at the mid-points of its edges and 

2

M
 at its centre. 

(ii)  Masses 
24

M
 at its corners and 

3

M2
 at its centroid.   

4. Principal axes 

2.12 References/ Suggested Readings 

1. F. Chorlton, A Text Book of Dynamics, CBS Publishers & Dist., New Delhi.  

2. Louis N. Hand and Janet D. Finch, Analytical Mechanics, Cambridge University Press  
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3.0 Learning Objectives 

In this chapter the reader will learn about generalized coordinates, Holonomic and Non-holonomic 

systems, Lagrange‟s equations for a holonomic system, Lagrange‟s equations for conservative and 

impulsive forces, Kinetic energy as quadratic function of velocities, Donkin‟s theorem and generalized 

potential.  

3.1 Introduction 

A system of moving particles forms a dynamical system. The set of positions of all the particles is 

called the configuration of the dynamical system. Constraints impose difficulties in studying the 

dynamics of a system. The forces of constraints acting on a dynamical system restrict some of the 

coordinates to vary independently. The resulting equations of motion are not necessarily independent. As 

a result a set of independent coordinates are required for the description of the configuration of a 

dynamical system. 

Cartesian coordinates are just fine for describing particles that can move unconstrained throughout space. 

But when the motion is constrained in some way, another choice of coordinates may be preferable. Thus 

generalized coordinates help us to overcome such type of problem. 

3.2  Some Basic Definitions 

3.2.1 Generalized Co-ordinates 

A dynamical system is a system which consists of particles. It may also include rigid bodies. A Rigid 

body is that body in which distance between two points remains invariant. Considering a system of N 

particles of masses m1, m2,…...., mN or mi         (1  i  N). Let (x, y, z) be the co-ordinates of any 

particle of the system referred to rectangular axes. Let position of each particle is specified by n 

independent variables q1, q2,…., qn at time t. That is  

 x = x (q1, q2,… ,qn ; t) 

 y = y (q1, q2,… ,qn ; t) 

 z = z (q1, q2,…, qn ; t) 

The independent variables qj are called as “generalized co-ordinates” of the system.  

3.2.2 Generalized Velocities   
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Let the dynamical system consists of N particles of masses mi (1  i  N) and at time t, suppose each 

particle is specified by „n‟ generalized co-ordinates  qj (j = 1 to n). Then the „n‟ quantities 
dt

dq
q

j
j   , (j = 

1 to n) are called the generalized velocities of the system, where we use „‟ to denote total differentiation 

w.r.t. time. 

Result: Let ir


 be the position vector of particle of mass mi at time t. Then  

 ir


 = ir


(q1, q2,…, qn; t)       …(1) 

Then  
dt

rd
r i
i


    

 
t

r

dt

dq

q

r
...

dt

dq

q

r

dt

dq

q

r
r in

n

i2

2

i1

1

i
i






















  

 
t

r

q

r
q...

q

r
q

q

r
qr i

n

i
n

2

i
2

1

i
1i




























  

We regard n21 q,......,q,q  , t as independent variables. So,  

  
j

i

j

i

q

r

q

r














 

3.2.3 Holomonic and Non-Holonomic systems 

If the „n‟ generalized co-ordinates (q1, q2,…, qn) of a given dynamical system are such that we can 

change only one of them say q1 to (q1 + q1) without making any changes in the remaining (n1) co-

ordinates, then the system is said to be Holonomic otherwise it is said to be “Non-Holonomic” system.  

3.2.4 Virtual displacement 

Suppose the particles of a dynamical system undergo a small instantaneous displacement independent of 

time, consistent with the constraint of the system and such that all internal and external forces remain 

unchanged in magnitude & direction during the displacement. 

3.2.5 Virtual Work and Generalized forces  
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Consider a dynamical system consisting of N particles of masses mi (1  i  N). Let mi is the mass of ith 

particle with position vector ir


 at time t ; it undergo a virtual displacement to position ii rδr


 .  

Let iF


 = External forces acting on mi 

and 'Fi


 = Internal forces acting on mi 

Therefore, virtual work done on mi during the displacement irδ


 is  

  iii rδ.)FF(


  

  Total work done on all particles of system is,  

W = 



N

1i
iii rδ.)FF(


   

       =   



N

1i
ii

N

1i
ii rδ.Frδ.F


   , 

where W is called virtual work function. If internal forces do not work in virtual displacement, then 

 



N

1i
ii rδ.F


 = 0 

So  W = 


N

1i
ii rδ.F


 

 

 

Let Xi, Yi, Zi are the components of iF


 and xi, yi, zi are the components of irδ


, 

i.e. )Z,Y,X(F iiii 


        and    )zδ,yδ,xδ(rδ iiii 


 

Then  W = 



N

1i
iiiiii )zδZyδYxδX( .   

Let the system is Holonomic, i.e., the co-ordinate qj changes to qj + qj without making any change in 

other (n1) co-ordinates.  

Let this virtual displacement take effect and suppose the corresponding work done on the dynamical 

system to be Qj qj ,     then 
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Constraints 

Holonomic 

Co-ordinates are related by 

equations f( = 0 

Non-Holonomic 

Co-ordinates are related 

through inequalities  

Scleronomic 

1. Time independent i.e. 

derivative w.r.t. t is 

zero 

2. Independent of 

velocities  

Rheonomic 

Time dependent i.e. derivative 

w.r.t. t is non-zero.  

 

Constraints depends explicitly 

on time 

Holonomic 

 Qj qj = 


N

1i
ii rδ.F


 

Now, if we make similar variations in each of generalized co-ordinate qj, then  

 W =  
 


n

1j

N

1i
iijj rδ.FδqQ


 

Here Qj are known as Generalised forces and qj are known as generalised virtual displacements.  

3.3 Constraints of Motion  

When the motion of a system is restricted in some way, constraints are said to have been introduced.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Examples of Holonomic constraints: 
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1.  2)( ji rr


 constant 

2. f( )t,r,...,r n1


 = 0 

Example of non-Holonomic constraints:  

Consider the motion of particle on the surface of sphere. Constraints of motion is   (r
2
  a

2
)  0 where „a‟ 

is the radius of sphere.  

3.4 Lagrange’s equations for a Holonomic dynamical system  

Lagrange‟s equations for a Holonomic dynamical system specified by n-generalised co-ordinates qj ( j = 

1, 2, 3,….., n) are  

  j
jj

Q
q

T

q

T

dt

d

























, 

where T = K.E. of system at time t and  Qj = generalized forces. 

Proof: Consider a dynamical system consisting of N particles. Let mi , ir


 be the mass, position vector of 

ith particle at time t and undergoes a virtual displacement to position ii rδr


 . 

Let iF


 = External force acting on mi   ,  

      iF


 = Internal force acting on mi 

Then equation of motion of ith particle of mass mi is  

 irmFF iii


         …(1) 

The total K.E. of the system is,  

 T = 


N

1i

2

ii rm
2

1          …(2) 

Now 




















































 j

i
n

1k k
k

j

i

q

r

q
q

tq

r

dt

d





     …(3) 





























 



n

1k k

i
k

k

i
n

1k
k

i
i

i

q

r
q

tdt

d

q

r
q

t

r
r

dt

rd











        

So (3)   































































 j

i

k

n

1k
k

j

i

j

i

q

r

q
q

q

r

tq

r

dt

d




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     = 

































 n

1k k

i

j
k

i

j q

r

q
q

t

r

q





 

     = 


































n

1k k

i
k

j

i

j q

r
q

qt

r

q





    [ kq  are independent of qj] 

     = i

n

1k k

k

j

r
q

q
tq


 
























 

     = )r(
qdt

rd

q
i

j

i

j




















 

 
j

i

j

i

q

r

q

r

dt

d






















 
       …(4) 

Also we know that  

 
j

i

j

i

q

r

q

r














        …(5) 

Consider  

 








































j

i
i

j

i
i

j

i
i

q

r

dt

d
r

q

r
r

q

r
r

dt

d








  

        = 
j

i
i

j

i
i

q

r
r

q

r
r








 



     [using (4)] 

 








































j

i
i

j

i
i

j

i
i

q

r
r

q

r
r

dt

d

q

r
r










    [Using (5)] 

       = 
































)r(

q2

1
)r(

qdt

d

2

1 2

i

j

2
i

j




 

Multiplying both sides by mi and taking summation over i = 1 to N, we have 

  
  



























N

1i

N

1i

2

ii

jj

i
ii rm

2

1

qdt

d

q

r
rm 




   











 2

ii

j

rΣm
2

1

q
  
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Initial line S (fixed) 

 

 

P(r,) 
(m) 

P  Planet 

S  Sun (fixed) 

 
jjj

i
N

1i
ii

q

T

q

T

dt

d

q

r
)FF(






























 


        [Using (1) and (2)] …(6) 

Also we have the relation,  

 W =   
  


n

1j

N

1i

N

1i
iiiiijj rδ.]FF[rδ.FδqQ


   …(7) 

Since the system is Holonomic, we regard all generalized co-ordinates except qj as constant. Then, (7) 

gives  

 Qj qj  = 



N

1i
iii rδ)FF(


      …(8) 

 Qj = 



N

1i j

i
ii

qδ

rδ
)FF(


 

 jQ  = 
 




N

1i j

i
ii

q

r
)FF(


       …(9) 

Therefore from (6) and (9), we get  

 j
jj

Q
q

T

q

T

dt

d

























,    j = 1, 2,…, n 

This is a system of n equations known as Lagrange‟s equations.     

 

3.5 Example of  Planetary Motion  

 

 

 

 

 

 

Let (r, ) be the polar co-ordinates of P w.r.t. S at time t.  

Under the action of inverse square law of attraction, force = 
2r

mμ
  
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Here radial velocity = r  

and transverse velocity = rθ  

Here (r, ) are the generalized co-ordinates of the system and K.E. is  

 T = ]θrrv[)θrr(m
2

1 2222222    

where r, , θ,r   are independent. As the system is Holomonic, the virtual work function is given by  

 W = δθ]QδrQδqQδqQδqΣQδW[0δr
r

mμ
θr2211jj2








 
  

 Qr = 
2r

μm
 

and      Q = 0 

Now 

















)θrr(m

2

1

rr

T 222   

 
2θmr

r

T 



 

and  0
θ

T





 

Also  θmr
θ

T
,rm

r

T 2 














 

Therefore Lagrange‟s equations are  

 rQ
r

T

r

T

dt

d



















       …(1) 

and θQ
θ

T

θ

T

dt

d

















        …(2) 

Then from (1), we have 

 
2

2

r

μm
θmr)r(m

dt

d 
        …(3) 

  m
2

2

r

μm
θmrr


   
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 
2

2

r

μ
θrr


          …(4) 

From (2), we have 

00)θr(m
dt

d 2   

  0)θr(
dt

d 2          …(5) 

3.6 Lagrange’s equation for a conservative system of forces  

Suppose that the forces are conservative and the system is specified by the generalized co-ordinates qj (j 

= 1, 2,…, n). So we can find a potential function 

V(q1, q2,…, qn) such that W =  V,  

where V = n
n

2
2

1
1

qδ
q

V
...qδ

q

V
qδ

q

V














 

 W = 


















n

1j
j

j

δq
q

V
 

  
 




















n

1j

n

1j
j

j

jj δq
q

V
δqQ  

 Qj  = 
jq

V




       …(1) 

Therefore, Lagrange‟s equation for a conservative holonomic dynamical system becomes  

 
jjj q

V

q

T

q

T

dt

d





























             ,   j = 1, 2,…, n 

or 0)VT(
qq

T

dt

d

jj

























     …(2) 

Let  L = T  V, where L is Lagrange‟s function.  

Then (2)  0
q

L

q

T

dt

d

jj

























     …(3) 
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Since V does not depend upon n21 q,...,q,q    

 0
q

V

j







       …(4) 

Then using (4) in (3), we obtain 

0
q

L

q

L

dt

d

jj

























          ,  j = 1, 2,…, n 

3.7 Generalised components of momentum and impulse  

Let qj (j = 1, 2,.…, n) be generalized co-ordinates at time t for a Holonomic dynamical system. Let T = T 

(q1, q2,…., qn, t),q,....,q,q n21
 be the kinetic energy. Then, the n quantities pj  is defined by 

  pj = 
jq

T




 ; (j = 1, 2,…, n) are called generalized components of momentum. 

We know that Lagrange‟s equation is  

 0
q

T

q

T

dt

d

jj

























 

 0
q

T
)p(

dt

d

j
j 




  

Now T = )zyx(m
2

1
rm

2

1
vm

2

1 22222      

Then px = xm
x

T








 

Similarly,   py = m zmp,y z
      

For generalized forces Qj (j = 1, 2,…., n) for dynamical system, the n quantities Jj defined by  

j

τ

0

j

0τ
jQ

JdtQLt 
















  (finite)    when limit exists, are called generalised impulses.  

Since W = 


n

1j
jj qδQ     ,  (j = 1, 2,…, n) 
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   
 













τ

0

n

1j

τ

0

jj dtQqδdtWδ   

  






 















n

1j

τ

0

j

0τ
Q

j

τ

00τ
Q

dtQLtδqdtδWLt
jj

  

 U = 


n

1j
jj qδJ  

where U is called impulsive virtual work function given by 





τ

00τ
Q

dtδWLtUδ
j

. 

3.8 Lagrange’s equation for Impulsive forces 

It states that generalized momentum increment is equal to generalized impulsive force associated with 

each generalized co-ordinate, i.e., pj  = Jj,  j = 1, 2,…., n 

Derivation: - We know that Lagrange‟s equations for Holonomic system are  

 j
jj

Q
q

T

q

T

dt

d

























       ,   (j = 1, 2,…., n) 

 j
j

j Q
q

T
)p(

dt

d





        …(1) 

Integrating this equation from t = 0 to t = ,  we get  

 (pj)t=  (pj)t=0 =  


τ

0

τ

0

j
j

Qdt
q

T
dt , (j = 1, 2,…., n) 

Let Qj  ,   0 in such a way that  

  




τ

0

jj

0τ
Q

JdtQLim
j

(finite)   ,  (j = 1, 2,…., n) 

Further as the co-ordinate qj do not change suddenly,  

  






τ

0 j
0τ

0dt
q

T
Lt  

Writing pj = 
0τ

Lt


[(pj)t=  (pj)t=0], 
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We thus obtain Lagrange‟s equation in impulsive form  

 pj  =  Jj      ,  j = 1, 2,…., n  

3.9 Kinetic energy as a quadratic function of velocities  

Let at time t, the position vector of ith particle of mass mi of a Holonomic system is ir


, then K.E. is  

 T = 


N

1i

2

ii rm
2

1         …(1) 

where N is number of particles. Suppose that the system to be Holonomic and specified by n generalized 

co-ordinates qj , then ii rr


 (q1, q2,…., qn; t) 

 
t

r

q

r
q...

q

r
q

q

r
q

dt

rd
r i

n

i
n

2

i
2

1

i
1

i































     , ( i = 1, 2,…., N) …(2) 

From (1) and (2), we have 

 T = 




























N

1i

2

i

n

i
n

2

i
2

1

i
1i

t

r

q

r
q...

q

r
q

q

r
qm

2

1








  

     = 























N

1i

2

n

i
n

2

i
2

1

i
1i

q

r
q...

q

r
q

q

r
qm

2

1








  

  +  
 


































N

1i

N

1i n

i
n

1

i
1

i
i

2

i
i

q

r
q...

q

r
q

t

r
m

t

r
m

2

1








 

 T = .......)qq2aqa...qaq[(a
2

1
2112

2
nnn

2
222

2
111    

  + 2 (a1 ]a)qa....qaq nn221       …(3) 

where ars = asr = 

























N

1i s

i

r

i
i

q

r

q

r
m


,   s  r 

 ar = 

























N

1i

i

r

i
i

t

r
.

q

r
m


 

 a = 













N

1i

2

i
i

t

r
m


 

Equation (3) shows that T is a quadratic function of the generalized velocities.  
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Special Case: - When time t is explicitly absent, then ii rr


 (q1, q2,…., qn) 

 
n

i
n

2

i
2

1

i
1

i

q

r
q...

q

r
q

q

r
q

dt

rd
r


























  , ( i = 1, 2,…., N) 

and 0
t

ri 





 

From (3), we get  

 T = ........]qq2aqa.......qaq[a
2

1
2112

2
nnn

2
222

2
111    

    = 
 

n

1s

n

1r
srrs qqa

2

1
  

Thus the K.E. assumes the form of a Homogeneous quadratic function of the generalized velocities 

n21 q...q,q  . 

In this case, using Euler‟s theorem for Homogeneous functions, we have 

 T2
q

T
q...

q

T
q

q

T
q

n
n

2
2

1
1 






















  

 T2pq...pqpq nn2211    

3.10 Donkin’s Theorem 

Let a function F (u1, u2,…., un) have explicit dependence on n independent variables u1, u2,…, un. Let the 

function F be transformed to another function G = G (v1, v2,…, vn) expressed in terms of a new set of n 

independent variables v1, v2,…, vn where these new variables are connected to the old variables by a 

given set of relation  

 vi = 
iu

F




,  i = 1, 2,….., n      …(1) 

and the form of G is given by  

 G (v1, v2 ,…., vn) = 


n

1i
ii vu   F (u1, u2 ,….un)   …(2) 

then the variables u1, u2, …, un satisfy the dual transformation  
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 ui = 
iv

G




        …(3) 

and  F (u1, u2, …, un) = 


n

1i
ii vu   G (v1, v2 ,…., vn)  

This transformation between function F & G and the variables ui & vi is called Legendre‟s dual 

transformation. 

Proof: Since G is given by  

 G (v1, v2,…., vn) = 


n

1k
kk vu   F (u1, u2,…., un) 

Then  




















n

1k
n21kk

ii

)u...u,u(Fvu
vv

G
  

        =   
   















n

1k

n

1i

n

1k i

k

ki

k
kk

i

k

v

u

u

F

v

v
uv

v

u
 

   
  















 n

1k

n

1k i

k

k

kikk

i

k

i v

u

u

F
δuv

v

u

v

G
 

        =  
  










n

1k

n

1k i

k

k
ik

i

k

v

u

u

F
uv

v

u
 

        =  
  














n

1k

n

1k i

k

k
i

ki

k

v

u

u

F
u

u

F

v

u
  














k
k

u

F
v)1(  

        = ui   

 i
i

u
v

G





 

3.11 Extension of Legender’s dual transformation 

Further suppose that there is another set of m independent variables 1, 2,…, m present in both F and 

G. 

 F = F (u1, u2,…., un, 1, 2,…. ,m) 

 G = G (v1, v2,…, vn, 1, 2,….,m) 
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Then there should be some extra conditions for Legendre‟s dual transformation to be satisfied. These 

conditions are  

 
jj α

G

α

F









,   j = 1, 2,…., m   

Consider G = G (v1, v2,…, vn, 1, 2,… ,m)  

      = 


n

1i
ii vu  F (u1, u2, …, un, 1, 2,… ,m)    …(*) 

From L.H.S. of (*), we have 

 G =  
  






n

1i

m

1j
j

j
i

i

δα
α

G
vδ

v

G
      …(1) 

From R.H.S. of (*), we have 

 G =    
    









n

1i

n

1i

n

1i

m

1j j
i

i
iiii

α

F
uδ

u

F
uδvvδu  j  …(2) 

Equating (1) and (2), we have 

      
      
















n

1i

m

1j

n

1i

n

1i

n

1i

m

1j
j

j

i

i

iiiij

j

i

i

δα
α

F
δu

u

F
δuvδvuδα

α

G
δv

v

G
 

 vi = 
iu

F




 are satisfied provided  

 ui = 
iv

G




 and  

jj α

F

α

G









 

3.12 Generalised potential for conservative system 

For conservative forces, Potential function V = V (q1, q2,…,qn), therefore   

 W =  V 

       =  
















 j

j

δq
q

V
  

Also W = Qj qj    , where Qj are generalized forces.  
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   
















 j

j
jj qδ

q

V
qδQ  

 Qj  =  
jq

V




 , j = 1, 2, …, n 

3.13 Generalised potential for non-conservative system 

Consider that the system is not conservative. Let U is Generalised potential, say it depends on 

generalised velocities ( )q j
  i.e. we consider the case when in place of ordinary potential V (qj, t), there 

exits a generalised potential U (qj, t, jq ) in terms of which the generalised forces Qj are defined by 

Qj = 
jj q

U

q

U

dt

d























             ,    j = 1, 2, …, n  

[ L = TV for conservative system,  L = TU for non-conservative system] 

Here U is called generalised potential or velocity dependent potential.  

Here Lagrange‟s equations are 

   
jj

j
jj q

U

q

U

dt

d
Q

q

T

q

T

dt

d















































 ,  j = 1, 2, …, n 

 0)UT(
q

)UT(
qdt

d

jj
























 

 0
q

L

q

L

dt

d

jj

























  [ L = T  U for non-conservative system] 

3.14 Check Your Progress 

 Define Holonomic and Non-Holonomic dynamical systems. 

 What are the Lagrange‟s equations for a Holonomic dynamical system? 

 What are the generalized components of momentum? 
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 Write the realtion between Potential function (V) and generalized forces (Qj) for conservative 

system of forces. 

 

 

3.15 Summary 

In this chapter we have discussed about generalized coordinates and generalized velocities, 

Holonomic and Non-holonomic systems, constraints of motion, Lagrange‟s equations for a 

holonomic dynamical system, Lagrange‟s equations for conservative forces and impulsive forces. 

Further we have studied about Kinetic energy as a quadratic function of velocities, Donkin‟s 

theorem and Generalized potential for conservative and non-conservative forces.  

3.16 Keywords 

Generalized coordinates, Holonomic and Non-holonomic systems, Lagrange‟s equations, 

conservative, non-conservative and impulsive forces, generalized potential, Donkin‟s theorem  

3.17 Self-Assessment Test 

1. What are constraints? Classify the constraints with some examples. 

2. Show that the generalized momentum increment is equal to the generalized impulsive force 

associated with each generalized co-ordinate. 

3. Set up the Lagrangian for a simple pendulum and hence obtain an equation describing its motion. 

3.18 Answers to check your progress 

1. If the „n‟ generalized co-ordinates (q1, q2,…, qn) of a given dynamical system are such that we can 

change only one of them say q1 to (q1 + q1) without making any changes in the remaining (n1) 

co-ordinates, then the system is said to be Holonomic otherwise it is said to be Non-Holonomic 

system.  

2. Lagrange‟s equations for a Holonomic dynamical system specified by n-generalised co-ordinates qj 

( j = 1, 2, 3,….., n) are  
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  j
jj

Q
q

T

q

T

dt

d

























, 

where T = K.E. of system at time t and  Qj = generalized forces. 

3. The quantity pj = 
jq

T




 ; (j = 1, 2,…, n) are called generalized components of momentum, where T 

is the K.E. of system. 

4. Qj  =  
jq

V




 , j = 1, 2, …, n 
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4.24 Self-Assessment Test 

4.25 Answers to check your progress 

4.26 References/ Suggestive Readings 

4.0 Learning Objectives 

In this chapter the reader will learn about Energy equation for conservative fields, Hamilton‟s 

variables, Hamilton‟s canonical equations, Routh‟s equations, Poisson‟s Bracket, Poisson‟s Identity, 

Jacobi-Poisson Theorem, Hamilton‟s Principle, Principle of least action, Poincare Cartan Integral 

invariant, Whittaker‟s equations and Jacobi‟s equations. 

4.1 Introduction 

So far we have discussed about Lagrangian formulation and its application. In this lesson, we 

assume the formal development of mechanics turning our attention to an alternative statement of the 

structure of the theory known as Hamilton‟s formulation. In Lagrangian formulation, the independent 

variables are qi and iq , whereas in Hamiltonian formulation, the independent variables are the 

generalized coordinates qi and the generalized momenta pi  . 

4.2 Energy equation for conservative fields  

Prove that for a dynamical system  

 T + V = constant 

where  T = K.E. 

 V = P. E. or ordinary potential  

Proof: Here V = V (q1, q2,…, qn) 

 T = T (q1, q2 ,…. , qn, t);q...q,q n21
  

 L = T  V = L (q1, q2…qn, t);q,....,q,q n21
  

If Lagrangian function L of the system does not explicitly depend upon time t, then  

 0
t

L





 

i.e. L = L(qj, jq ) for j = 1, 2,…, n 



Mechanics  MAL-513 

DDE, GJUS&T, Hisar  71 |  

 

The total time derivative of L is  

  
  









n

1j

n

1j
j

j
j

j

q
q

L
q

q

L

dt

dL



       …(I) 

We know that the Lagrange‟s equation is given by  

 0
q

L

q

L

dt

d

jj























 , j = 1, 2,…, n    …(II) 

Now (I)  
 




































n

1j
j

jj

n

1j
j q

q

L

q

L

dt

d
q

dt

dL



   [using (II)] 

      = 
 














n

1j j
j

q

L
q

dt

d


  

 



















n

1j j
j L

q

L
q

dt

d


  = 0      …(1) 

 








n

1j j

j L
q

L
qHwhere,0

dt

dH


  

is a function called Hamiltonian 

 H = 



n

1j
jj Lpq        …(A) 

[ j
j

p
q

L







 = generalized component of momentum] 

Integrating (1), we have 

 
 

n

1j j
j

q

L
q


  L = constant      …(2) 

Now  
  






n

1j

n

1j j
j

j
j

q

T
q

q

L
q





  

      =  
  






















n

1j

N

1i

2

ii

j

j rm
q

q
2

1 


  








 



N

1i

2

ii rm
2

1
T   
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      =  
  




























n

1j

N

1i j

i
iij

q

r
rmq




  

      = 


















































 
  j

i

j

i
n

1j

N

1i j

i
iij

q

r

q

r

q

r
rmq









  

      =  
 
















 N

1i
iii

N

1i

n

1j
j

j

i
ii rrmq

q

r
rm 


  

      = 2T        …(3) 

From (2) and (3), we have 

 2T  L = constant 

 2T  (TV) = constant   [ L = TV] 

 T + V = constant. 

Also from (A), H = T + V = constant. 

  Total energy is T + V = H, when time t is explicitly absent.  

4.3 Cyclic or Ignorable co-ordinates  

Lagrangian function L is defined by L = T  V 

If Lagrangian does not contain a co-ordinate explicitly, then that co-ordinate is called Ignorable or cyclic 

co-ordinate.  

Let L = L (q1, q2,…, qn, )t,q,...q,q n21   

Let qk is absent in L, then 0
q

L

k





 

Lagrange‟s equation (equation of motion) corresponding to qk becomes  

kk q

L
00

q

L

dt

d

 















 = constant = pk 

4.4 Hamiltonian function and Hamiltonian variables  

In Lagrangian formulation, independent variables are generalized co-ordinates and time. Also 

generalised velocities appear explicitly in the formulation.  
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 L (
kq , kq , t) 

Like this Lagrangian L ( jq , jq , t), a new function is Hamiltonian H which is function of generalized co-

ordinates, generalized momenta and time, i.e.,  

 H (qj, pj, t),       where   pj = 
jq

L




 

Also we have shown that  

 H =  
j

jj Lqp   ,  j = 1, 2,…, n 

This quantity is also known as Hamiltonian. The independent variables q1, q2,…, qn , p1, p2,…, pn, t are 

known as Hamiltonian variables.  

4.5 Hamilton’s Canonical equations of motion  

Lagrange‟s equations of motion are  

 0
q

L

q

L

dt

d

jj

























,  j = 1, 2,…, n    …(*) 

Now H = H (qj, pj, t)       …(1) 

 H = 



n

1j
jjjj )t,q,q(Lqp        …(2) 

The differential of H from (1),  

 dH =  













dt

t

H
dp

p

H
dq

q

H
j

j
j

j

    …(3) 

From (2), we have 

      dH =  
 




n

1j
j

j

jjjj dq
q

L
]dpqqd[p   









dt

t

L
qd

q

L
j

j




 

dt
t

L
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q

L
dq

q
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q

L
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n

1j
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j
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
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
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
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
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
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dt
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dq
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L
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n
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j

jj
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
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


  

 

      …(4) 
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From Lagrange‟s equation (*), we have 

    
j

j
q

L
)p(

dt

d




   

j
j

q

L
p




      …(5) 

Using (4) and (5), we get 

 dH =  
  




n

1j

n

1j
jjjj

t

L
dqpdpq  dt     …(6) 

Comparing equations (3) and (6), we get  

 
j

jj

j q

H
p,q

p

H









  ,     where j = 1, 2,…, n  …(7) 

and 
t

L

t

H









 ,       …(8) 

The equation (7) is called Hamiltonian’s canonical equations of motion or Hamilton‟s equations.  

Result: - To show that if a given co-ordinate is cyclic in Lagrangian L, then it will also be cyclic in 

Hamiltonian H.  

If L is not containing qk , i.e.,  qk is cyclic, then 
kq

L




 = 0 

So  kp  = 0     pk = constant 

From equation (1), H (qj, pj, t) 

  H (q1, q2,….., qk1, qk+1,…., qn, p1, p2,…. pk1, pk+1….pn, t) 

If H is not containing t, i.e.  

 H = H (qj , pj) 

Then   








 j

j
j

j

p
p

H
q

q

H

dt

dH
  

Using equation (7) or Hamilton‟s equation of motion, we have 

   






























 0

q

H

p

H

p

H

q

H

dt

dH

jjjj

 

 
dt

dH
 = 0  H = constant.  
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O X 

 

 

(m) 

P(r,) 

If the equations of transformation are not depending explicitly on time and if P.E. is velocity 

independent, then H = E (total energy), which can also be seen from the expression as given under: 

Let  (rr ii


 q1, q2,…., qn) 

P.E.,    V = V (q1, q2,…., qn) 

K.E.,  T = 


N

1i

2
ii rm

2

1   

Now 
 




n

1j
j

j

i
i q

q

r
r 


  

 T =  
 

















N

1i

2
n

1j
j

j

i
i q

q

r
m

2

1



 

     = (quadratic function of )q,....,q,q n21   

Then by using Euler‟s theorem for Homogeneous function, we have  

 T2
q

T
q

j
j 



 

  

Now  H =  jp  



 L

q

L
qLq

j
jj 

     = 




j
j

q

T
q


   L = 2T  L 

 H = 2T  (T  V) = T + V = E 

 H = E 

Example: - Write the Hamiltonian and Hamilton‟s equation of motion for a particle in central force field 

(planetary motion).  

Solution: Let (r, ) be the polar co-ordinates of a particle of mass „m‟ at any instant of time t.   

 

 

 

 

 

 

Now L = T  V(r)  ,  where  V(r) = P.E. 
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 L = ]θrr[m
2

1 222     V(r)      …(1) 

As  qj = r,  

 θ,rq j
   

 pj = pr , p 

Now pr = θmr
θ

L
p,rm

r

L 2
θ
















     …(2) 

Then,  H = )r(V)θrr(m
2

1
θprpLqp 222

θrjj    

    = m
222222 θmr

2

1
)r(m

2

1
θmrr    + V(r)   [using (2)] 

    = )r(V)θrr(m
2

1 222         …(3) 

 H = T + V 

From (2), we have    rp
m

1
r      and   θ2

p
mr

1
θ   

Then from (3), we have  

 H = 




























2

2

θ2

2

r

mr

p
r

m

p
m

2

1
 + V(r) 

 H = 









2

2
θ2

r
r

p
p

m2

1
 + V(r)  , which is the required Hamiltonian. 

Hamilton‟s equations of motion are,  

 
j

j
j

j
q

H
p,

p

H
q









   

The two equations for jq  are  

 r
r

r

q
m

p

p

H
r  




  

Similarly, θ2
θ

θ

q
mr

p

p

H
θ  




  
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Also two equations for jp  are, 

 
r

)r(V

mr

p

r

H
p

3

2
θ

r








  

and 0
θ

H
pθ 




    p = constant 

4.6 Routh’s equations 

Routh proposed for taking some of Lagrangian variables and some of Hamiltonian variables.  

The Routh variables are the quantities  

 t, qj, q, jq , p 

where j = 1,2,….,k 

and  = k + 1, k + 2, …., n 

k is arbitrary fixed number less than n. Routh‟s procedure involves cyclic and non-cyclic co-ordinates. 

Suppose co-ordinates q1, q2,…., qk (k < n) are cyclic (or Ignorable). Then we want to find a function R, 

called Routhian function such that it does not contain generalized velocities corresponding to cyclic co-

ordinates.  

 L = L (q1, q2,…., qn, t,q,...,q,q n21  ) 

If q1, q2,…., qk are cyclic, then  

 L = L (qk+1,…., qn, )t,q,....q,q n21   

so that  

 dL =  
  











n

1kj

n

1j
j

j
j

j

dt
t

L
qd

q

L
dq

q

L



 

  
  




























n

1kj

n

1kj
j

j

j

j

k

1j
j

j

qd
q

L
dq

q

L
qd

q

L
Ld 





+ dt

t

L




  …(1)   

Routhian function R, in which velocities k21 q....q,q   corresponding to ignorable co-ordinates q1, q2,…., 

qk are eliminated, can be written as  

 R = R (qk+1, qk+2,…., qn, )t,q,....q n1k    

so that 
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 dR =  
  











n

1kj

n

1kj
j

j
j

j

dt
t

R
qd

q

R
dq

q

R



    …(2) 

Further we can also define Routhian function as  

 R = L  


k

1j
jj pq        …(*) 

We want to remove  


k

1j
jq  or 



k

1j
jq  from L to get R. 

Now from (*), we have 

  dR = dL   
 


k

1j

k

1j
jjjj qdpdpq   

 dR =  dL   
 




k

1j

k

1j
jj

j

qqd
q

L



 dpj   


















j

j
q

L
p


    

 dR =   
  














n

1kj

n

1kj

k

1j
jjj

j

j

j

dpqdt
t

L
qd

q

L
dq

q

L



     [using (1)] …(3) 

Then comparing (2) and (3) by equating the coefficients of varied quantities as they are independent, we 

get  

 
jjjj q

R

q

L
,

q

R

q

L

 
















   ,       j = k + 1, k + 2,…., n             …(4) 

and 
t

R

t

L









  

Put (4) in Lagrangian‟s equations,  

 
 


































n

1j jj q

L

q

L

dt

d


 = 0 , j = 1, 2,…, n 

we get,   

 
 


































n

1kj jj q

R

q

R

dt

d


 = 0 
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or 0
q

R

q

R

dt

d

jj

























 ,   j = k + 1,…., n 

These are (nk) 2
nd

 order equations known as Routh‟s equations.  

4.7 Poisson’s Bracket  

Let A and B are two arbitrary functions of a set of canonical variables (or conjugate variables) q1, q2,…., 

qn, p1, p2,…., pn , then Poisson‟s Bracket of A and B is defined as  

[A, B]q,p =  






























j jjjj q

B

p

A

p

B

q

A
 

 

If F is a dynamical variable, i.e.,  

 F = F (qj, pj, t), then  

 
t

F
p

p

F
q

q

F
)t,p,q(

dt

dF

dt

dF

j
j

j
j

j
jj



























      …(1) 

Using Hamilton‟s canonical equations, we have 

 
j

j
j

j
q

H
p,

p

H
q









   

 From (1), we have 






































t

F

q

H

p

F

p

H

q

F

dt

dF

jjjj

 

 
t

F
]H,F[

dt

dF
p,q




  

If F is not depending explicitly on t, then  

 0
t

F





 

So  































jjjj q

H

p

F

p

H

q

F

dt

dF
 = [F, H] q, p 
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4.7.1 Some basic properties of Poisson’s Bracket 

1. [X, Y]q,p =  [Y, X]q,p 

2. [X, X] = 0 

3. [X, Y + Z] = [X, Y] + [X, Z] 

4. [X, YZ] = Y [X, Z] + Z [X, Y] 

Solution: - 

I. By definition, we have   [X, Y] q, p =  






























j jjjj q

Y

p

X

p

Y

q

X
 

Now  [Y, X] q, p =  






























j jjjj q

X

p

Y

p

X

q

Y
 

      =   






























j jjjj q

Y

p

X

p

Y

q

X
 

 [Y, X] q, p =   [X, Y] q, p 

II. [X, X] q, p =  






























j jjjj q

X

p

X

p

X

q

X
 = 0 

Also [X, C] q, p =  






























j jjjj q

C

p

X

p

C

q

X
 = 0 

III. [X, Y + Z] q, p =  






























j jjjj q

)ZY(

p

X

p

)ZY(

q

X
 

            = 




































































j jjjjjj q

Z

q

Y

p

X

p

Z

p

Y

q

X
 

 [X, Y + Z] q, p =  






























j jjjj q

Y

p

X

p

Y

q

X
 +  































j jjjj q

Z

p

X

p

Z

q

X
 

           = [X, Y] q, p + [X, Z] q, p 
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IV.  [X, YZ] q, p =  






























j jjjj q

(YZ)

p

X

p

(YZ)

q

X
 

       = 


































































j jjjjjj q

Z
Y

q

Y
Z

p

X

p

Y
Z

p

Z
Y

q

X
 

       = Y
























































































j jjjjj jjjj q

Y

p

X

p

Y

q

X
Z

q

Z

p

X

p

Z

q

X
 

       = Y [X, Z] q, p + Z [X, Y] q, p 

 

Also  

(i) [qi, qj]q,p = 0   

(ii) [pi, pj]q,p = 0  

(iii) [qi, pj]q,p = ij = 








ji,0

ji,1
 

Solution:- 

(i)  [qi, qj]q, p =  

























k k

j

k

i

k

j

k

i

q

q

p

q

p

q

q

q
     …(1) 

Because qi or qj is not function of pk , so 

 
k

j

k

i

p

q
,0

p

q









 = 0 

Then (1)  [qi, qj]q, p = 0. 

(ii)   [pi, pj]q, p =  

























k k

j

k

i

k

j

k

i

q

p

p

p

p

p

q

p
 

As pi, pj is not a function of qk  ,  

 0
q

p
,0

q

p

k

j

k

i 








 

So  [pi, pj] q, p = 0 

 (iii)  Now [qi, pj] q, p =  

























k k

j

k

i

k

j

k

i

q

p

p

q

p

p

q

q
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    = 


























k k

j

k

i

k k

j

k

i

p

p

q

q
0

p

p

q

q
 

    =  
k

ijij
k

jkik δδδδ  

 [qi, pj]q, p = ij = 








ji,0

ji,1
 

 

4.7.2 Some other properties of Poisson Bracket 

If [, ] be the Poisson Bracket of  & , then  

(1) 






























t

ψ
,ψ,

tt



 ],[  

(2) 


















dt

d

dt

d

dt

d 



 ,,],[  

Solution: (1)   
t


[, ] = 














































i iiii qppqt


 

          =  





























i iiii qppqt


 














































































































































i iiiiiiii qtpqptptqpqt


 

 







































































































































i iiiiiiii tpqptqtpqptq


 

  








































































































































i i iiiiiiii tqptpqtpqptq


 

 






























t

ψ
,ψ,

tt



 ],[ . 

(2) Similarly, we can prove 
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


















dt

d

dt

d

dt

d 



 ,,],[  

4.8 Hamilton’s equations of motion in Poisson’s Bracket  

If  H  Hamiltonian, then 

 [q, H]q, p = q
p

H





 

and  [p, H]q, p = p
q

H





 

Proof: From Hamilton‟s equations, we have 

 q
p

H
,p

q

H
 









             ------- (1) 

Now  [qj, H]  =  

























i ii

j

ii

j

q

H

p

q

p

H

q

q
 

  [qj, H]  =  

















i i

j

i
ji 0

p

q

p

H
δ   

    = 
jp

H




  = jq      [using (1)] 

   [q, H]q,p = q
p

H





        

Similarly, [pj, H]  = jp  

Hence  [p, H]q, p = p
q

H





 

Note: If [pj, H] = 0, then  

 jp  = 0        pj = constant 

4.9 Jacobi’s Identity on Poisson Brackets (Poisson’s Identity) 

If X, Y, Z are functions of q and p only, then  

 [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0 
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Proof: [X, [Y, Z]] + [Y, [Z, X]] = [X, [Y, Z]]  [Y, [X, Z]] 

  






















































































 

j jjjjj jjjj q

Z

p

X

p

Z

q

X
Y,

q

Z

p

Y

p

Z

q

Y
X,  …(1) 

Let   

















j j jjjj

F
q

Z

p

Y
,E

p

Z

q

Y
 

  

















j jjj jj

H
q

Z

p

X
,G

p

Z

q

X
 

 (1)   [X, [Y, Z]]  [Y, [X, Z]]  

   = [X, EF]  [Y, GH] 

  = [X, E]  [X, F]  [Y, G] + [Y, H]    …(2) 

Let E = 











































 

j jj j jjj p

Z

q

Y

p

Z

q

Y
 

 E = E1 E2 

Similarly, F = F1 F2   , G = G1 G2   , H = H1 H2 

 RHS of (2) becomes  

[X, E]  [X, F]  [Y, G] + [Y, H] = [X, E1 E2] + [Y, H1 H2]  [X, F1F2]  [Y, G1G2] 

  = [X, E1] E2 + [X, E2] E1  [X, F1] F2  [X, F2] F1  [Y, G1] G2  

     [Y, G2] G1 + [Y, H1] H2 + [Y, H2] H1 

 RHS of (2) is = 









































































j jjj jj q

Z

p

Y
,X

p

Z

q

Y
,X  

    









































































j jjj jj q

Z

p

X
,Y

p

Z

q

X
,Y  

Using the property [X, E1 E2] = [X, E1] E2 + [X, E2] E1, we have 

 RHS of (2) is = 









































jjjj q

Y

p

Z
,X

p

Z

q

Y
X,  
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                  









































jjjj p

Y

q

Z
X,

q

Z

p

Y
X,  

                 









































jjjj q

X

p

Z
Y,

p

Z

q

X
Y,  

                +  









































jjjj p

X

q

Z
Y,

q

Z

p

X
Y,  

 RHS of (2) is =     



















































































































j jjjjjj q

Y
X,Y,

q

X

p

Z

p

Y
X,Y,

p

X

q

Z
 

 + 




























































































j jjjjjjjj q

Z
,Y

p

X

p

Z
,Y

q

X

q

Z
,X

p

Y

p

Z
,X

q

Y
 

           …(3) 

Using the identity, 

 





























t

Y
,XY,

t

X
]Y,X[

t
 

Then, we find that R.H.S. of equation (3) reduces to  

      = 






























j jjjj q

Y][X,

p

Z

p

Y][X,

q

Z
 

        + 0 (All other terms are cancelled) 

      =  





























j jjjj q

]Y,X[

p

Z

p

]Y,X[

q

Z
  

      =   [Z, [X, Y]] 

or [X, [Y, Z]] + [Y, [Z, X]] =  [Z, [X, Y]] 

 [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0 

Particular Case  

 Let Z = H, then  

 [X, [Y, H]] + [Y, [H, X]] + [H, [X, Y]] = 0 
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Suppose X and Y both are constants of motion, then  

 [X, H] = 0,  [Y, H] = 0 

Then Jacobi‟s identity gives  

 [H, [X, Y]] = 0 

 [X, Y] is also a constant of Motion. Hence Poisson‟s Bracket of two constants of Motion is itself 

a constant of Motion.  

4.10 Poisson’s Theorem 

The total time rate of evolution of any dynamical variable F (p, q, t) is given by  

  





t

F

dt

dF
[F, H] 

Solution: 



























j
j

j
j

j

p
p

F
q

q

F

t

F
)t,q,p(

dt

dF
  

        = 


































j jjjj q

H

p

F

p

H

q

F

t

F
 

  
dt

dF
 = 

t

F




 + [F, H]      …(1) 

Note: If F is constant of motion, then 
dt

dF
 = 0 

Then from Poisson‟s theorem, we have  

  
t

F




 + [F, H] = 0 

Further if F does not contain time explicitly, then 
t

F




 = 0 

 [F, H] = 0 

This is the required condition for a dynamical variable to be a constant of motion. 

4.11 Jacobi-Poisson Theorem (or Poisson’s Second theorem) 

If u and v are any two constants of motion of any given Holonomic dynamical system, then their Poisson 

bracket [u, v] is also a constant of motion.  
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Proof: - We consider 
t

]v,u[
dt

d




 [u, v] + [[u, v], H]   …(1) 

Using the following results,  

  





























t

v
,uv,

t

u
]v,u[

t
     …(2) 

 and [u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0   …(3) 

 (1)  ]H],v,u[[
t

v
,uv,

t

u
]v,u[

dt

d
























    …(4) 

Put w = H in (3), we get  

  [H, [u, v]] =   [u, [v, H]]  [v, [H, u]] 

          [[v, H], u]  [[H, u], v] = [[u, v], H]               …(5) 

From (4) and (5), we get 

 

























t

v
,uv,

t

u
]v,u[

dt

d
  [[v, H], u]  [[H, u], v] 

    = 
























t

v
,uv,

t

u
 + [u, [v, H]] + [[u, H], v] 

    = 

























]H,v[

t

v
,uv],H,u[

t

u
 

  

















dt

dv
,uv,

dt

du
]v,u[

dt

d
     …(6) 

Because 
dt

du
 and 

dt

dv
 both are zero as u and v were constants of motion.  

    (6)   
dt

d
[u, v] = 0 

 The Poisson bracket [u, v] is also a constant of motion.  

4.12 Hamilton’s Principle 



Mechanics  MAL-513 

DDE, GJUS&T, Hisar  88 |  

 

Statement: During the motion of a conservative holonomic dynamical system over a fixed time interval, 

the time-integral over that interval of the Lagrangian function (i.e. difference between the kinetic and 

potential energies) is stationary. 

In other words, this principle states that for a conservative holonomic dynamical system, its motion from 

time 
1t  to time 

2t  is such that the line integral (known as action or action integral)  


2

1

t

t

dtLS  

with VTL   has a stationary value for the actual path of the motion. The quantity S is known as 

Hamilton’s principal function. The principle may be expressed as  

0dtLδδS
2

1

t

t

      , where   δ   is the variation symbol. 

4.13 Derivation of Hamilton’s Principle from Lagrange’s equation 

We know that Lagrange‟s equations are  

  0
q

L

q

L

dt

d

jj

























 , j = 1, 2,…., n   …(1) 

Now   )dtq,δL(qdtLδδS
2

1

2

1

t

t

jj

t

t

    

     




































2

1

2

1

t

t

t

t j
j

j

j

j

qδ
q

L
δq

q

L
dtL 


dt 

   =  



















2t

1t

2t

1t

j
j

j
j

dtqδ
q

L
dtqδ

q

L



 

    




























2

1

2

1

2

1

t

t

t

t

j
j j

t

t
j

j

j

j

j

dtδq
q

L

dt

d
δq

q

L
dtδq

q

L


       …(2) 

Since, there is no coordinate variation at the end points, we have 

  0qδqδ
2t

j
1t

j   
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So (2)    



































2

1

2

1

t

t

t

t j jj q

L

dt

d

q

L
dtL


qj dt 

              
2t

1t

2t

1t

j dtqδ0dtL     [Using (1)] 

       = 0 

    
2

1

t

t

dtL = stationary, where 1t  , 2t  are fixed and VTL   

4.14 Derivation of Lagrange’s equations from Hamilton’s principle  

We are given,       
2t

1t

dtL = 0 

As qj are arbitrary and independent of each other, so its coefficients should be zero separately. So we 

have  

 



































j jj q

L

dt

d

q

L


 = 0   

 0
q

L

q

L

dt

d

jj

























       for   j = 1, 2,…., n 

4.15 Principle of Least action  

The action of a dynamical system over an interval t1 < t < t2 is defined as 

 A = 
2t

1t

T2  dt  , 

where T = K.E.  

This principle states that the variation of action along the actual path between given time interval is least, 

i.e.  

  
2t

1t

T2  dt = 0      …(1) 
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Now we know that T + V = E (constant),    …(2) 

where   V = P.E.,   T = K.E. ,   L = T  V      

By Hamilton‟s principle, we have  

 
2t

1t

Lδ  dt = 0  or   
2t

1t

0dt)VT(δ  

 
2t

1t

δ (T  E + T) dt = 0 

  
2t

1t

]Eδ)T2(δ[  dt = 0 

 
2t

1t

)T2(δ dt = 0  [using (2),  E = constant,      E = 0] 

  
2t

1t

T2  dt = 0  

4.16 Distinction between Hamilton’s Principle and Principle of least 

action  

4.17 Hamilton‟s principle, i.e. S = 0 is applicable when the time interval (t2  t1) in passing from one 

configuration to the other is prescribed whereas the principle of least action i.e. A = 0 is applicable 

when the total energy of system in passing from one configuration to other is prescribed and the time 

interval is in no way restricted.  

4.18 Poincare - Cartan Integral Invariant  

We derive formula for W in the general case when the initial and terminal instant of time, just like 

initial and terminal co-ordinates are not fixed but are functions of a parameter . 

 W() = 
2t

1t

L [t1 qj(t, ), )]α,t(q j dt 
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Let t1 = t1 (),  t2 = t2 () 

 )(αqq 1
j

1
j   at t = t1 

 )α(qq 2
j

2
j   at t = t2 

Now W =  
2t

1t

L  dt = L2 t2  L1 t1 + 



















2

1

t

t j
j

j

j

j

qδ
q

L
δq

q

L



 dt 

Integrating by parts,  

Then  W = L2 t2 +    
j j

ttj
1
j11ttj

2
j 12

]q[δpδtL]q[δp  

   + dtqδ
q

L

dt

d

q

L
j

2t

1t j jj








































   …(1) 

Now  qj = qj(t, ) 

 δα
α

α)(t,q
]q[δ

1

1

tt

j

ttj



 











  

and δαα)(t,q
α

]q[δ
2

2

tt

jttj



 











      …(2) 

On the other hand, for the variation of terminal co-ordinates  

 2
j

2
j qq   [ t (), ] 

 δα
α

α)(t,q
δtqδq

2tt

j

2
2
j

2
j















   

 2
2
j2ttj

2
j tδq]qδ[qδ       [Using (2)] 

 2
2
j

2
j2ttj tδqqδ]qδ[        …(3) 

Similarly, 1
1
j

1
jttj δtqδq]q[δ

1
       …(4) 

Put (3) and (4) in (1), we get  

 W = L2 t2 +  
j

2
2
j

2
j

2
j )tδqqδ(p    L1 t1 
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   




































2

1

t

t j jj

1
1
j

1
j

j

1
j

q

L

dt

d

q

L
)tδqq(δp


 qj dt 

 W = 





















































2t

1t j jj

2

1

n

1j
jj

q

L

dt

d

q

L
tδHqδp


qj dt  …(5) 

where   













 j
22

2
j

2
j

2

1

n

1j
jj tδHqδptδHqδp   

j

1
j

1
j qδp  + H1 t1 

Now we know that  H = L 
j

jj qp   

  H1 = L1  
1
j

j

1
j qp   

and  H2 = L2  
j

2
j

2
j qp   

In the special case for any , the path is extremum, the integral on R.H.S. of equation (5) is equal to zero 

and formula for variation of W takes the form  

 W = 

2

1

n

1j
jj tδHqδp
















      …(6) 

Integrating, we get  

 W =  















n

1j
jj tδHqδp  dt 

which is known as Poincare Cartan Integral Invariant.     

4.19 Whittaker’s Equations  

We consider a generalised conservative system, i.e. an arbitrary system for which the function H is not 

explicitly dependent on time. For it, we have  

 H (qj, pj) = E0 (constant)      …(1) 

where   j = 1, 2,…., n 

(2n  dimensional phase space in which qj, pj are coordinates)  

Then basic integral invariant I will becomes  
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 I =     tδHqδp jj  

 I = 


n

1j
jj qδp   [ for a conservative system, t = 0]  …(2) 

Solving (1) for one of the momenta, for example p1 (say), we have 

 p1 =  K1 (q1, q2,…., qn, p2,…, pn, E0)     …(3) 

Put the expression obtained in (2) in place of p1, we get  

 I =   











n

2j
11jj δqpδqp  

  I =   











n

2j
11jj δqKδqp       …(4) 

But this integral invariant (4) again has the form of Poincare – Cartan integral if it is assumed that the 

basic co-ordinate and momenta are quantities qj & pj (j = 2, 3,..., n) and variable q1 plays the role of time 

variable (and in place of H, we have function K1). Therefore the motion of a generalised conservative 

system should satisfy the following Hamilton‟s system of differential equations (2n  2). 

.…3, 2, = j;
dq

dp

q

K
and,

p

K

dt

dq
q

1

j

j

1

j

1j

j 







   …(5) 

The equations (5) were obtained by Whittaker and are known as Whittaker‟s equations. 

4.20 Jacobi’s equations 

Integrating the system of Whittaker‟s equations, we find qj & pj (j = 2, 3,…., n) as functions of variables 

q1 and (2n 2) arbitrary constants C1, C2,…., C2n2. Moreover, the integrals of Whittaker‟s equations will 

contain an arbitrary constant E0 , i.e., they will be of the form  

 qj = j (q1, E0, C1, C2…. C2n2) 

 pj = j (q1, E0, C1, C2…. C2n2)  (j = 2, 3,…, n)   …(6) 

Putting expression (6) in (3), we find  

 p1 = 1 (q1, E0, C1, C2,….., C2n2)     …(7) 
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From equation  

 




















1

1

1

1

p

H

dq
dt

p

H

dt

dq
 

 t =  














1

1

p

H

dq
 C2n1       …(8) 

where all the variables in partial derivative 












1p

H
 are expressed in terms of q1 with the help of (6) and 

(7). The Hamiltonian system of Whittaker‟s equations (5) may be replaced by an equivalent system of 

equations of the Lagrangian type: 

 0
q

P

q

P

dq

d

jj1























,   j = 2, 3,…., n      …(9) 

These are (n 1) second order equations where  

 
1

j
j

dq

dq
q   

and the function P (analogous to Lagrangian function) is connected with the function K1 (analogous of 

Hamiltonian function) by the equation  

 P = P (q1, q2, …., qn, )q,...,q n2
  

 P = 1

n

2j
jj Kqp 



        …(10) 

The momenta pj must be replaced by their expression in terms of 

 
1

2
2

dq

dq
'q  ,……, 

1

n
n

dq

dq
q   

which may be obtained from first (n1) equation (5). 

From (3) and (10), we have 

 P = 



n

1i
ii

1
1

n

2j
jj qp

q

1
pqp 


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 P  = 
1q

1


 (L + H)       …(11) 

For conservative system,  

 L = T  V,   H = T + V 

 L + H = 2T 

Then P = 
1q

T2


        …(12) 

and K.E., T = k

n

1k,i
iik qqa

2

1




 

     = )q,......,q,q,.....,q,(qGq n2n21
2
1

      …(13) 

where  

 G (q1, q2,…., qn, k

n

1ki,
iikn2 qqa

2

1
)q,......,q  



   …(14) 

From (1) and (13), we obtain  

 H = E 

and T = G 2
1q  

       
G

VH

G

T
q1


  

 
G

VE
q1


         …(15) 

and  P = 1
1

2
1

1

qG2
q

Gq2

q

T2







  

 P = 2G
G

VE
      [from (15)] 

    = 2 )VE(G         …(16) 

Differential equation (9) in which function P is of the form (16) and which belong to ordinary 

conservative system are called Jacobi‟s equations.  
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4.21 Theorem of Lee - Hwa - Chung  

If      I = 


n

1i
iA[ (qk, pk, t) qi + Bi (t, qk, pk) pi] 

is a universal relative integral invariant, then I = c I1, where c is a constant and I1 is Poincare integral.  

For n = 1,  

  I =   )pδBqδA(  

 I = c  qδp  = c I1 

 







 



n

1i
ii1 ]qδp[I  

and I1 =  qδp   H t from Poincare Cartan integral.  

4.22 Check Your Progress 

1. What do you understand by ignorable coordinates? 

2. Define the Hamiltonian of a system. 

3. What are the Hamilton‟s canonical equations? 

4. State principle of least action. 

5. Define Jacobi‟s identity. 

6. Define the Routhian or Routh function. 

7. What do you mean by Poisson brackets? 

4.23 Summary 

In this chapter we have discussed about Energy equation for conservative fields, Hamilton‟s 

variables, Hamilton‟s canonical equations and Routh‟s equations. Further we have studied about 

Poisson‟s Bracket, Poisson‟s Identity, Jacobi-Poisson Theorem, Hamilton‟s Principle, Principle of 

least action, Poincare Cartan Integral invariant, Whittaker‟s equations and Jacobi‟s equations. 

4.24 Keywords 



Mechanics  MAL-513 

DDE, GJUS&T, Hisar  97 |  

 

Energy equation, Hamilton‟s canonical equations, Routh‟s equations, Poisson‟s Bracket, 

Hamilton‟s Principle, Jacobi‟s equations 

4.25 Self-Assessment Test 

1. Write the Hamiltonian and Hamilton‟s canonical equations of motion for simple pendulum. 

2. What is Hamilton‟s principle? Derive Lagrange‟s equations of motion from it for a conservative 

system. 

3. State and derive principle of least action. Also explain the difference between this principle and 

Hamilton‟s principle. 

 

4.26 Answers to check your progress 

1. If Lagrangian does not contain a co-ordinate explicitly, then that co-ordinate is called Ignorable or 

cyclic co-ordinate.  

2. The Hamiltonian of a system is defined to be the sum of the kinetic and potential energies 

expressed as a function of positions and their conjugate momenta. 

3. The Hamilton‟s canonical equations are 

j

jj

j q

H
p,q

p

H









  ,     where j = 1, 2,…, n 

4. The Principle of Least Action, states that the variation of action along the actual path between 

given time interval is least, i.e., A = 0 , 

where the action (A) of a dynamical system over an interval t1 < t < t2 is defined as 

A = 
2t

1t

T2  dt  ;  T = K.E.  

5. If X, Y, Z are functions of q and p only, then  

[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0 

6. The Routhian or Routh function usually denoted by R  is defined as 

R = L  


k

1j
jj pq  
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7. If  A and B are two arbitrary functions of a set of canonical variables (or conjugate variables) q1, 

q2,…., qn, p1, p2,…., pn , then Poisson‟s Bracket of A and B is defined as  

[A, B] q, p =  






























j jjjj q

B

p

A

p

B

q

A
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Chapter - 5 

Canonical Transformations 

Structure: 

5.0 Learning Objectives 

5.1 Introduction  

5.2 Point transformation 

5.3 Canonical transformation 

5.4 Hamilton – Jacobi Equation 

5.5 Jacobi‟s Theorem 

5.6 Method of separation of variables 

5.6.1 Examples based on method of separation of variables 

5.7 Lagrange‟s Bracket  

5.8 Properties of Lagrange‟s Bracket 

5.9 Invariance of Poisson‟s Bracket under Canonical transformation 

5.10 Poincare integral Invariant 

5.11 Invariance of Lagrange‟s bracket under Canonical transformation 

5.12 Check Your Progress 

5.13 Summary 

5.14 Keywords 

5.15 Self-Assessment Test 

5.16 Answers to check your progress 

5.17 References/ Suggestive Readings 

 

5.0 Learning Objectives 

In this chapter the reader will learn about Canonical transformations, Method of separation of 

variables, Lagrange‟s Brackets, Invariance of Lagrange brackets and Poisson brackets under canonical 

transformations. 

5.1 Introduction 
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The Hamiltonian formulation if applied in a straightforward way, usually does not decrease the 

difficulty of solving any given problem in mechanics; we get almost the same differential equations as 

are provided by the Lagrangian procedure. The advantages of the Hamiltanian formation lie not in its use 

as a calculation tool, but rather in the deeper insight it affords into the formal structure of mechanics. 

We first derive a specific procedure for tranforming one set of variables into some other set which may 

be more suitable. 

In dealing with a given dynamical system defined physically, we are free to choose whatever generalised 

coordinates we like. The general dynamical theory is invariant under transformations qi → Qi, by which 

we understand a set of n variable expressing one set of n generalised co-ordinates qi in term of another 

set Qi. Invariant means that any general statement in dynamical theory is true no matter which system of 

coordinates is used. 

In Hamiltonian formulation, we can make a transformation of the independent coordinates qi , pi to a new 

set Qi, Pi with equations of transformation 

Qi = Qi (q, p, t), Pi = Pi (q, p, t) 

Here we will be taking transformations which in the new coordinates Q, P are canonical.  

5.2 Point transformation  

 Qj = Qj (qj, t) 

Transformation of configuration space is known as point transformation.  

5.3 Canonical transformation  

old variables  new set of variable  

 qj, pj  Qj, Pj 

Here Qj = Qj (qj, pj, t) 

 Pj = Pj (qj, pj, t)       …(1) 

If the transformation are such that the Hamilton‟s canonical equations  

 
j

j

j

j
q

H
p,

p

H
q









  

preserve their form in the new variables, i.e.  
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j

j
j

j
Q

K
P,

P

K
Q









   

K being Hamiltonian in the new variable, then transformations are said to be Canonical 

Transformation.  

Also if  H =  Lqp jj   in old variable, then in new variable,  

 K =   'LQP jj
  

where L = new Lagrangian  

Now 0
Q

'L

Q

'L

dt

d

jj























  

i.e. Lagrange‟s equations are covariant w.r.t. point transformation and if we define Pj as  

Pj = 
j

jj

Q

)Q,Q('L








 

 
j

jj

j
P

t),P,K(Q
Q




  

and 
j

jj
j

Q

)t,P,Q(K
P




  

Hamilton‟s principle in old variable,   
2t

1t

0dtL  

   0dtt)p,H(q,qpδ
2

1

t

t

jj     [   HqpL jj
 ]  …(2) 

and in new variable,  

    
2

1

t

t

jj 0dtt)P,K(Q,QPδ       …(3) 

       0dtKQPHqp
2

1

t

t

jjjj        …(4) 

Let  F = F (q, p, t) 
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    
2

1

2

1

t

t

t

tt)]p,[F(q,δt)p,(q,F
dt

d
 

              = F 

              = 

2t

1t

j
j

j
j

pδ
p

F
qδ

q

F









 

     = 

2

1

2

1

t

t

j

j

t

t

j

j

δp
p

F
δq

q

F









 = 0 

[Since the variation in qj and pj at end point vanish] 

 (4)       0dt
dt

dF
KQPHqp

2

1

t

t

jjjj 








    

     
dt

dF
KQPHqp jjjj        …(5) 

In (5), F is considered to be function of (4n + 1) variables i.e. qj, pj, Qj, Pj, t. 

But two sets of variables are connected by 2n transformation equation (1) and thus out of 4n variables 

besides t, only 2n are independent.  

Thus F can be fuinction of F1 (q, Q, t), F2 (q, P, t), F3 (p, Q, t), or F4 (p, P, t) 

So transformation relation can be derived by the knowledge of function F. Therefore it is known as 

Generating Function.  

Let  F1 = F1 (q, Q, t) 

    t)Q,(q,
dt

dF
KQPHqp 1

jjjj
     …(6) 

and  
t

F
Q

Q

F
q

q

F
t)Q,(q,

dt

dF 1
j

j

1
j

j

11




























      …(7) 

 From (6) and (7), we get  

   















j j

1
j

j

1
j

j

1

j
jjjj

t

F
Q

Q

F
q

q

F
KQPHqp   
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or 0
t

F
KHQ

Q

F
Pqp

q

F 1

j
j

j

1
jj

j
j

j

1 






































    …(8) 

Since qj and Qj are to be considered as independent variables, equation (8) holds if the coefficients of qj 

and Qj separately vanish, i.e.  

 
j

1

q

F




(q, Q, t) = pj       …(9) 

and Pj = 
j

1

Q

t)Q,(q,F




        …(10) 

and K = H + 
t

)t,Q,q(F1




       …(11) 

Equation (11) gives relation between old and new Hamiltonian. Solving (9), we an find     Qj = Qj (qj, pj, 

t) which when put in (10) gives 

 Pj = Pj (qj, pj, t)       …(12) 

Equations (12) are desired canonical transformation.  

5.4 Hamilton – Jacobi Equation  

If the new Hamiltonian vanish, i.e., K = 0, then  

 Qj = j (constant) 

 Pj = j (constant) 

Also  H + 
t

F1




 = K = 0 

 H (qj, pj, t) + 
t

F1




 = 0 

Using (9),       H 0
t

F
t,

q

F
,q 1

j

1
j 






















  

This partial differential equation together with equation (9) is known as Hamilton-Jacobi Equation. 

Generating function is also called characteristic function.  

Let F1 is replaced by S, then 
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 0t,
q

S
,.......,

q

S
,

q

S
,q,...,q,qH

t

S

n21

n21 
























,   …(9) 

The solution S to above equation is called Hamilton principle function or characteristic function. 

Equation (9) is first order non-linear partial differential equation in (n + 1) independent variables (t, q1, 

q2,…,qn) and one dependent variables S. So Therefore, there will be (n + 1) arbitrary constants out of 

which one would be simply an additive constant and remaining n arbitrary constants may appear as 

arguments of S so that complete solution has the form  

 S = S (q, t, ) + A      …(10) 

where i = 1, 2,…, n are n constants and A is additive constant. 

Jacobi proved a theorem known as Jacobi‟s theorem that the system would volve in such a way that the 

derivatives of S w.r.t. ‟s remain constant in time and we write  

 i
i

β
α

S





 (constant)  ,  (i = 1, 2, …., n) 

 i = Ist integrals of motion  

 i = IInd integrals of motion 

5.5 Jacobi’s Theorem  

If S(t, qi, i) is some complete integral of Hamilton Jacobi equation (9) , then the final equations of 

motion of a holonomic system with the given function H may be written in the form  

 
i

i

i

S
andp

q

S









 = i 

where i, i are arbitrary constants  

Proof: Given the complete integral for S given by (10), we wish to prove  

i

i

S





 

Consider 

  












































j

ijii

q
α

S

qα

S

tα

S

dt

d
  
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      = j
jii

q
q

S

αt

S

α






































  

      = j

ji

2

j

j

j

i

q
q

S
p

q

S
,q,tH 








































   [using (9)] 

 j

ji

2

ji

2

j

i

j

ji

q
q

S

q

S

q

S

Hq

q

HS

dt

d





















































 

Since qj‟s and i‟s are independent, we get 0
q

i

j





 

 












i

S

dt

d
= 

ji

2

j
j qα

S
q

p

H





















   = 0    …(*) 

Now using Hamilton‟s equation of motion,  
j

j
p

H
q




  

From (*), we have  

 0
α

S

dt

d

i













 


iα

S




 = constant = i  , (i = 1, 2,…, n) 

Remark: Consider total time derivative of S (qj, j, t) 

  















t

S
α

α

S
q

q

S

dt

dS
j

j
j

j

  

But we know that 0α j   since j are constant.  

Also j
j

p
q

S





 and H + 0

t

S





 gives H

t

S





, so we have 

   LHqp
dt

dS
jj   

 S =  dtL + constant 
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The expression differs from Hamilton‟s principle in a constant show that this time integral is ofindefinite 

form. Thus the same integral when indefinite form shapes the Hamilton‟s principle. 

5.6 Method of separation of variables 

For a generalised conservative system, 0
t

H





. Then Hamilton‟s Jacobi equation has the form  

 0
q

S
,qH

t

S

i

i 
















 

If Hamiltonian does not explicitly contain time, one can linearly decouple time from rest of variables in 

S and we write 

S (q1, q2,…….,qn, t) = S1(t) + V1 (q1, q2, ……qn) 

and its complete solution is of the form  

 S =  Et + V (q1, q2,…., qn, 1,…, n-1, E) 

      [As S = function of t + function of q  ]  

   

5.6.1 Examples based on Method of separation of variables 

Example 1: - Write Hamiltonian for one-dimensional harmonic oscillator of mass m and solve 

Hamilton-Jacobi equation for the same.  

Solution: - Let q be the position co-ordinates of harmonic oscillator, then q  is its velocity and 

 K.E.,   T = 
2

1
m 

2q  

 P.E.,   V = 
2

1
 kq

2   
[ k is some constant] 

Lagrangian  

L = T  V = 
22 qk

2

1
qm

2

1
  

The momentum is  

 p = qm
q

L








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     
m

p
q   

Then, the Hamiltonian is  

 H =  Lqp ii   

     = p 







 22 kq

2

1
qm

2

1
q   

     = p 
2

1

m

p
m

2

1

m

p
2

2

 k q
2
 

 H = 2
2

kq
2

1

m

p

2

1
  

Also for a conservative system,  

Total Energy = P.E. + K.E. = 







 2

2
2

2

2

kq
m

p

2

1
kq

2

1

m

p
m

2

1
 = Hamiltonian 

    H (q, p) = 
2

kq

m2

p 22

          …(1) 

Replacing p by 
q

S




 in H, 

 
2

kq

q

S

2m

1

q

S
q,H

22


























.  

Then from,  

















i

i
q

S
,qH

t

S
 = 0, we get 

 
2

kq

q

S

m2

1

t

S 22


















 = 0      …(2) 

We separate variables 

 S (q, t) = V (q) + S1 (t)  

dq

dV

q

S
&

dt

dS

t

S 1 








  

Putting in (2), we get 
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  0
dt

dS

2

kq

dq

dV

2m

1 1
22









  

   
2

kq

dq

dV

m2

1

dt

dS 22

1 







  

L.H.S. is function of t only and R.H.S. is function of q only. 

But it is possible only when each side is equal to a constant (E) (say). 

 Let     E
dt

dS1         …(i) 

 and   Ekq
2

1

dq

dV

m2

1 2

2









      …(ii) 

Now (i)  S1 =  Et + constant 

and  (ii)  















 2

2

kq
2

1
E2m

dq

dV
 

    







 2kq

2

1
E2m

dq

dV
 

     V (q) =  







 constantdqkq

2

1
E2m

2

1

2  

Therefore, complete integral is  

 S (q, t) = S1 (t) + V(q) 

    S (q, t) =  Et +  







 constantdqkq

2

1
E2m

2

1

2  

Further by Jacobi‟s theorem,  

Here α1 = E  

 11

1 E

SS










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 
















2

1

2

11

kq
2

1
E

dq

2

2m
tβ

E

S
β  

        











2

1

2

1

q
k

2E

dq

k

2

2

m
tβ  

        =  t + 

 






























a

x
sindx

xa

1

q
k

2E

dq

k

m 1

22

2

2
  

                    = 












 

2E

k
qsin

k

m
t 1

 

         












 

2E

k
qsinβt

m

k 1
1  

       







 1βt

m

k
sin

2E

k
q  

        q (E, t)  =  







 1βt

m

k
sin

k

2E
 

The constants β1, E can be found from initial conditions. 

The momentum is given by 

 p = 
 

q

)q(V)t(S

q

S 1









 

  = 
q

V




 

  = 
2

1

2kq
2

1
E2m 








  

  =  2
1

2kq2E
2

2m
  

  =  2kq2Em  , 
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which can be expressed as a function of t if we put q = q(t). 

Example 2: - Central force problem in Polar co-ordinates (r, θ) 

Here K.E, 

T =   22 θrrm
2

1    

P.E.,  V(r) 

Then L = T  V 

      L  =   (r)Vθrrm
2

1 222     …..(1) 

Now   pr = 
r

L




   [q1 = r, rq1

  , q2 = θ, θq2
  , pj = pr, pθ] 

 pr = rm       
m

p
r r     …..(2) 

Also  pθ = θmr
θ

L 2
 


      

2mr

p     …..(3) 

Therefore, Hamiltonian is 

                  H =  Lqp ii
  

= V(r)θrrm
2

1
θprp 22. 2

θr 







     [using (1)] 

= V(r)
r2m

pmr

2mr

pm

mr

p
p

m

p
p

42

2

θ
2

2

2
r

2

θ
θ

r
r   [using (2) and (3)] 

  = )r(V
mr2

p

m2

p

mr

p

m

p
2

2
θ

2
r

2

2
θ

2
r   

  = )r(V
mr

p

m

p

2

1
2

2
θ

2
r 








  

  = V(r)
r

p
p

2m

1
2

2
θ2

r 







  

H  J equation is 

S 
 

P(r, ) 
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 0H
t

S





 

 0V(r)
θ

S

r

1

r

S

2m

1

t

S
2

2

2











































 

Using the Method of separation of variable, we have   

 S = S1(t) + R(r) +  (θ)      …..(4) 

Then,  )r(V
θd

Φd

r

1

dr

dR

m2

1

dt

dS
2

2

2

1 




























    …..(5) 

L.H.S. of (5) is function of t and R.H.S. is function of r & θ but not of t, therefore it is not possible only 

where each is equal to constant =  E (say). 

 E
dt

dS1       S1 (t) =  Et + constant    …..(6) 

and     E(r)V
dθ

dΦ

r

1

dr

dR

2m

1
2

2

2






























    …..(7) 

 

2

22

22

dθ

dΦ

2m

1
ErV(r)r

dr

dR

2m

r

















    …..(8) 

L.H.S of (8) is function of r only and R.H.S is function of   only,  

So each = constant =  say
m2

h2

 

Thus h
dθ

dΦ
         …..(9) 

  constantθhθΦ         …..(10) 

Then equation (8) gives 

 
m2

h
Er)r(Vr

dr

dR

m2

r 2
22

22









    [Using (9)] 

     
















2

22

r

h
VEm2

dr

dR
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     2
1

22rhVE2m
dr

dR   

     R  =     drrhVE2m 22 constant   …..(11) 

Therefore, complete solution is  

 S = S1 + R + Ф 

   S  =  Et + hθ +     drrhVE2m 22 constant , is required solution. 

Now, 




E

S
 constant 

    t + 

 

  



sayβ

r

h
VEm2

drm
1

2

2
 

The other equation is  

 




h

S
 constant  

 

  
  










sayβ

rhVE2m

dr2hr

2

1
θ 2

2

1
22

2

  

Example: - When a particle of mass m moves in a force field of potential V. Write the Hamiltonian. 

Solution: - Here K.E. is 

 T =  222 zyxm
2

1
   


m

p
z,

m

p
y,

m

p
x zyx     

and P. E. is V (x,y,z) 

So  H = T + V 

 H =    z,y,xVppp
m2

1 2
z

2
y

2
x   

Example 3: - A particle of mass m moves in a force whose of potential in spherical coordinates V is   μ 

cosθ/r
2 

. Write Hamiltonian in spherical coordinate (r, θ, ). Also find solution of H.J. equation. 
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Solution: - L =     r,θ,Vθrθrrm  222222 sin
2

1   

 rm
r

L
pr








  


 


 

222 sin,= mrpmr
L

p 



 

Hamiltonian is given by  

 H = 
222

2

2

2
2 cos

sin2

1

rr

p

r

p
p

m
r





 













  

Writing  


















S
p,

θ

S
p,

r

S
p θr  

Required Hamilton Jacobi equation is 

 0
cos

sin

11

2

1
2

2

22

2

2

2




























































r

S

r

S

rr

S

mt

S 


 …(1) 

Let S (t, r, θ, ) = S1(t) + S2(r) + S3(θ) + S4() in (1), then we have 

 













































2

2

4

22

2

3

2

2

21 cos

sin

11

2

1

rd

dS

rd

dS

rdr

dS

mt

S 


 

L.H.S. is function of t only, R.H.S. is function of r, θ,  and not of t, so it is possible only when each is 

constant (=  E) (say). 

      constant1
1  EtSE

dt

dS
                   …(2) 

and   E
rd

dS

rd

dS

rdr

dS

m








































2

4

22

2

3

2

2

2 cos

sin

11

2

1 


 

Multiplying 2mr
2
 and rearranging terms, we get 




cos2
sin

1
2

2

4

2

2

32

2

22 m
d

dS

d

dS
Emr

dr

dS
r 


























   ……(*) 

L.H.S. of (*) is function of r only and R.H.S. is function of θ and . It is possible only if each is equal to 

constant. 
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Let  1
2

2

22 2 







mEr

dr

dS
r       …(3) 

and     1

2

4

2

2

3 cos2
sin

1





















m

d

dS

d

dS
               …(4) 

Then from (3), we have      constant2
2

1
2 dr

r
mES


   …(5) 

Also from (4), we have 

2

322
1

2

2

4 sinsinsincos2 




















 d

dS
m

d

dS
   …(6) 

L.H.S. of (6) is function of  whereas R.H.S. is function of θ and it is possible when each is equal to 

constant. 

Let  

2

4










d

dS
= β2          2

4 



d

dS
    2

2

4 












d

dS
   …(7) 

Also  



d

dS
p 4         …(8) 

 constant4  pS           …(9) 

Now from (7) and (8), we have 2
2  p     …(10)  

Then using (10) in (6), we obtain 

 S3 =     decpm 1
22 coscos2  + constant    …(11) 

Now complete solution is given by S (t, r, θ, ) = S1(t) + S2(r) + S3(θ) + S4() 

Then using equations (2), (5), (9), (11), we have 

constantcoscos22 22
12

1     


pdecpmdr
r

mEEtS  

5.7 Lagrange’s Bracket  

Lagrange‟s bracket of (u, v) w.r.t. the basis (qj, pj) is defined as  

{u, v}q,p or (u, v)q,p =  

























j

jjjj

v

q

u

p

v

p

u

q
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5.8 Properties of Lagrange’s Bracket  

(1)       (u, v) =  (v, u) 

(2) (qi, qj) = 0 

(3) (pi, pj) = 0 

(4) (qi, pj) = ij 

Solution: 

(1) We have 

 

u),(v

v

p

u

q

v

q

u

p

v

q

u

p

v

p

u

q
v),(u

j

jjjj

j

jjjj





























































    

(2) (qi, qj) =  






























k i

k

j

k

j

k

i

k

q

p

q

q

q

p

q

q
    =  0      

 





















 0

q

p
and0

q

p
t  independen are sp' and sq' Since

i

k

j

k  

(3) Similarly, we can prove that  

   {pi, pj} = 0 

(4) {qi, pj} = ij
k

kjki
k k j

k

i

k

i

k

j

k

j

k

i

k δδδ
p

p
.

q

q

q

p

p

q

p

p

q

q









































     

5.9 Invariance of Poisson’s Bracket under Canonical transformation 

Poisson‟s bracket is   

 (u, v)q, p =  






























j jjjj q

v

p

u

p

v

q

u
 

The transformation of co- ordinates in a 2n – dimensional phase space is called canonical if the 

transformation carries any Hamiltonian into a new Hamiltonian system. 

To show: - [F, G] q , p = [F, G]Q, P 
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Poisson‟s brackets is  

[F, G] q, p =  

























i iiii q

G

p

F

p

G

q

F
 

If q, p are functions of Q & P, then q = q (Q, P) & p = p (Q, P) and F & G will also function of (q, p), 

then we have  G = G (Qk, Pk). 

Now  [F, G] q, p = 


























































































ki,

i

k

ki

k

ki

i

k

ki

k

ki

q

P

P

G

q

Q

Q

G

p

F

p

P

P

G

p

Q

Q

G

q

F

 

    = 


























































































k,i

i

k

ii

k

ik

i

k

ii

k

ik

q

P

p

F

p

P

q

F

P

G

q

Q

p

F

p

Q

q

F

Q

G

  

    =    

















ki,
q.pk

k

pq,k

k

PF,
P

G
QF,

Q

G
   …(1) 

To find [F, Qk] q, p   and  [F, Pk] q, p   . 

Now replacing F by Qi in (1), we have 

[Qi, G] q, p =    
pq,ki

k

pq,ki
ki, k

P,Q
P

G
Q,Q

Q

G









  

     = 0 + ik
k kP

G





  

        [Qi, G] q, p =
iP

G




 

        [G, Qi]q, p =  
iP

G




 

and        [F, Qk]q, p = 
kP

F




          …(2) 

Replacing F by Pi in (1), we have 
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 [Pi, G] = 
iQ

G




        [G, Pi] = 

iQ

G




  

and [F, Pk] = 
kQ

F




        …(3) 

Put these values from (2) and (3) in (1), we get 

 [F, G] q, p = 


























ki, kkkk Q

F

P

G

P

F

Q

G
 

    = [F, G] Q, P 

 

5.10 Poincare integral Invariant  

Under Canonical transformation, the integral 

 
S

iidpdqJ        …(1) 

where S is any 2  D (surface) phase space remains Invariant  

Proof: - The position of a point on any 2 D surface is specified completely by two parameters, e.g. u, v  

Then   
 
 








v,upp

v,uqq

ii

ii
       …(2) 

In order to transform integral (1) into new variables (u, v), we take the relation 

 dqi dpi =
 
 

dvdu
v,u

p,q ii




      …(3) 

where 
 
 

v

p

v

q
u

p

u

q

v,u

p,q

ii

ii

ii




















as the Jacobian.  

Let Canonical transformation be 

 Qk = Qk (q, p, t), Pk = Pk (q, p, t)       …(4) 

then dQk dPk = 
 
 

dvdu
vu,

P,Q kk




      …(5) 

If J is invariant under canonical transformation (4), then we can write 
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 k

S k
ki

S i
i dPdQdpdq    

or 
 
 

 
 

dvdu
vu,

P,Q
dvdu

vu,

p,q

S k

kk

S i

ii

 







 

Because the surface S is arbitrary the expressions are equal only if the integrands are identicals, 

i.e.,       
 
 

 
 









k

kk

i

ii

vu,

P,Q

vu,

p,q
         …(6) 

In order to prove it, we would transform (q, p) basis to (Q, P) bases through the generating function F2 

(q, P, t). With this form of generating function, we have  
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We see that first term on R.H.S. is antisymmetric expression under interchange of i and k, its value will 

be zero, 

i.e., 
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Similarly, replacing q by P, we have from (8) 
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which proves that integral is invariant under canonical transformation. 

5.11 Invariance of Lagrange’s bracket under Canonical transformation 

The Lagrange‟s bracket of u and v is defined as  
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Since 
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

i

ii

vu,

p,q
 is invariant under Canonical transformation. 

So Lagrange‟s bracket is also invariant under canonical transformation.  

5.12 Check Your Progress 

1. Write the different forms of the generating function of the canonical transformation under 

consideration. 

2. Write the generating function of the form F1 (q, Q, t). 

3. Which equation is referred to as the Hamilton-Jacobi equation? 

4. Define Lagrange brackets. 

5.13 Summary 
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In this chapter we have discussed about the canonical transformations, Hamilton-Jacobi equation, 

Jacobi theorem, Method of separation of variables, Lagrange‟s Bracket and Invariance of 

Lagrange‟s bracket and Poisson‟s bracket under canonical transformations. Some examples based 

on canonical transformations and method of separation of variables has been discussed in detail. 

5.14 Keywords 

Canonical transformations, Hamilton-Jacobi equation, Method of separation of variables, 

Lagrange‟s Bracket 

5.15 Self-Assessment Test 

1. Explain Canonical transformations. Show that the transformation:  
p

q
Qtan;qp

2

1
P 22     

is canonical. 

2. Show that the transformation: 











q

psin
logQ;pcotqP   

is canonical. 

3. Solve the problem of motion of a particle of mass m moving under a central force using Hamilton-

Jacobi method. 

4. Give solution of one dimensional harmonic oscillator problem using Hamilton-Jacobi method. 

5.16 Answers to check your progress 

 

F1 (q, Q, t), F2 (q, P, t), F3 (p, Q, t), F4 (p, P, t) 

2. K = H + 
t

)t,Q,q(F1




 

3. The Hamilton-Jacobi Equation is  

0
t

F
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F
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4. Lagrange‟s bracket of (u, v) w.r.t. the basis (qj, pj) is defined as  

{u, v}q,p or (u, v)q,p =  

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6.0 Learning Objectives 

In this chapter the reader will learn about attraction and potential of rod, disc, spherical shells and 

sphere, Laplace and Poisson equations, Work done by self-attracting systems, Equipotential surfaces and 

Surface and solid harmonics. 

6.1 Introduction 

The Law of Gravitation states that “every particle in the universe attracts every other particle with 

a force which is directly proportional to the product of the masses of the particles and inversely 

proportional to the square of the distance between them”. This law was discovered by Sir Isaac Newton 

(1642-1727). 

Thus, if m,m   denote the masses of two particles and „r‟ their distance apart, then the force of 

attraction between them is 

2r

mm 
  

where   is known as the gravitation constant. Gravitation constant   measures the attraction of two 

particles, each of unit mass, at unit distance apart. To avoid a difficulty in defining the distance between 

two particles, we may define a material particle as a body so small that, for the purposes of our 

investigation, the distance between different parts of body may be neglected. The numerical value of   

is 
000,500,15

1
 approximately when C.G.S. units are used. We can choose units such that   = 1. Then 

such units are called astronomical or theoretical units. 

The acceleration „f‟ produced by the attraction of a particle of mass „m‟ on a particle at a distance „r‟ is 

given by,  

2r

m
f   

so that   = 1, when f, m and r are all unity. Hence, the astronomical unit of mass is the mass of a particle 

which by its attraction produces unit acceleration at unit distance. We can find the astronomical unit of 

mass in grammes by taking the above formula for acceleration, which holds good in all systems of units, 
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and putting r = 1 cm, f = 1 cm/sec
2
,  so that   m = 1 , or m = 1/  = 15,500,000 grammes. In what 

follows we shall omit the constant   . 

Potential:  

Let particles of masses ,m,m,m 321  be situated at points ,A,A,A 321  whose co-ordinates 

referred to rectangular axes are ,),,(,),,(),,,( 333222111 zyxzyxzyx   

Let P(x, y, z) be any point of space. Let ,r,r,r 321 denote the distance ,PA,PA,PA 321  

i.e.,    3,,2,1kforz)(zy)(yx)(xr 2
k

2
k

2
k

2
k   …(1) 

Let us now define a function V (x, y, z) by the formula 


k k

k

r

m
V                . …(2) 

The function V defined in (2) is a function related to a system of attracting particles having a definite 

value at every point P of space external to the particles. It is a function of the co-ordinates (x, y, z) of P 

and is clearly a single-valued function, in the sense that it cannot have more then one value at each point 

P; for it represents simply the sum of the masses of the separate particles divided by their respective 

distances from P. Further, V represents a sum which does not depend on the particular system of axes of 

reference. 

Now, differentiation of equations (1) and (2) with respect to x gives 

X
x

V





 

Similarly, 

Z
z

V
,Y

y

V










 

where (X, Y, Z) denote the components of the attraction of the given system of particles at point P(x, y, 

z). 

Definition: The function V defined by (2) is called the potential of the attracting particles, or the 

potential of the field of force. 

6.2 Attraction of a uniform straight rod at an external point  
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 

 
Y 

p 

 

P 

A Q M B x Q 
x     

X 

AB be a rod  

APB = α  β 

 

 

 

 

 

 

         

 

Let m be the mass per unit length of a uniform rod AB. It is required to find the components of attraction 

of the rod AB at an external point P. 

Let MP = p 

Consider an element QQ´ of the rod where  

MQ = x        ,           QQ´ = dx 

and            MPQ = θ   

In  MPQ   ,   

           tan θ = 
p

x

MP

MQ
            x = p tanθ                  …(*) 

 cos θ = 
PQ

p

PQ

MP
  

 PQ = 


secpPQ
cos

p
      …(**) 

Mass of element QQ´ of rod = m dx  

        = mp sec
2
θ dθ        …(using*) 

The attraction at P of the element QQ´ is = 
   2

2

2
PQ

dsecmp

cetandis

mass 
 along PQ 

Therefore, Force of attraction at P of the element QQ´ is 
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 = 
θsecp

θdθsecmp
22

2

    …[using(**)] 

= PQalongd
p

m
     …(1) 

Let  MPA = α and MPB = β 

Then  f = 




d
p

m
 

Let X and Y be the components of attraction of the rod parallel and r to rod respectively, then 

 X = 




dsin
p

m
 

and Y = 




dcos
p

m
 

Therefore, X =    cosαcosβ
p

m
cosθ

p

m α

β   

              = 






 

2

βα
sin

2

βα
sin2

p

m
    …(2) 

and Y =    sinβsinα
p

m
sinθ

p

m α

β   

         Y = 






 

2

βα
sin

2

βα
cos2

p

m
    …(3) 

Resultant force of Attraction R is given by  

  R = 22 YX   

  R = 
2

sin
p

m2 
    [using (2) and (3)] 

      = 
2

APB
sin

p

m2
  

Resultant R makes angle tan
1










Y

X  
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or    






















 









 

2

βα
tantan

Y

X
tanPMwithβα

2

1 11  

i.e., it acts along bisector of angle APB. 

Also X = 







 (2)using&

PA

p
αcos,

PB

p
βcos

PA

m

PB

m
   

Cor: - If the rod is infinitely long, then angle APB is two right angles and Resultant attraction = 
p

m2
 r 

to the rod. 

6.3 Potential of uniform rod 

By definition, the potential at P is given by  

  V =  dx
PQ

m
 

  V = 








d

secp

secmp 2

 

     = 




dsecm  

     = m




















 




24
tanlog  

        V = m 














 










 




24
tanlog

24
tanlog  

     =  m log


























 











 




42
tan

42
tan

 

6.4 Potential at a point P on the axis of a Uniform circular disc or plate  

We consider a uniform circular disc of radius „a‟ and P is a point on the axis of disc. The point P is at a 

distance r from the centre O, i.e.  

OP = r, OQ = x, PQ = 22 xr   

Let us divide the disc into a number of concentric rings and let one such ring has radius „x‟ and width dx.  
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r 

Q O Q 

P 

  

OP = r 

Then, Mass of ring is = ρ  2πx dx ,  

 where ρ density of material of disc ρ = mass/Area  

Therefore, Potential at P due to this ring is given by,  dV = 
22 xr

dxxρ2π


 

            

 

 

 

 

 

 

 

Hence, the potential at P due to the whole disc is given by 

  V = 2π ρ 


a

0
22 rx

dxx
 

  V =  





a

0

2

1
22 dxrxx2

2

2
 

   V = 2π ρ  rra 22   

Let Mass of disc = M = πa
2
 ρ 

 π ρ = 
2a

M
 

Then V =  rra
a

2M 22

2
  is required potential at any point P which lies on the axis of disc. 

6.5 Attraction at any point on the axis of Uniform circular disc 

Here radius of disc = a  

  OP = r,  PQ = 22 rx   

  OQ = x 
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We consider two element of masses dm at the two opposite position Q and Q´ as shown. Now element 

dm at Q causes attraction on unit mass at P in the direction PQ. Similarly, other mass dm at Q´ causes 

attraction on same unit mass at P in the direction P Q´ and the force of attraction is same in magnitude. 

These two attraction forces when resolved into two directions one along the axes PO and other at right 

angle PO. Components along PO are additive and component along perpendicular to PO canceling each 

other.   

Mass of ring = 2πx dx ρ 

Attraction at P due to ring along PO is given by  

 
 

 2PQ

θcosdm
fd





  

 
 2PQ

ρdxx2π.cosθ
fd 


= 
 3PQ

xdx2.r 
   along PO      [ ΔOPQin

PQ

r
θcos  ] 

                                                   

     

 2
3

22 xr

dxxr ρ.2π
fd






 

Therefore, the resultant attraction at P due to the whole disc along PO is given by 

    dxxr2xrπρf 2

3
22

a

0


 


 

    =  
a

0

2

1
22 rx2rπρ 











 

    = POalong
ra

1

r

1
rρ2π

22










  

 Let   M = mass of disc of radius a  

    =  πa
2
 

          π ρ = 
2a

M
 

So 











222
ra

r
1

a

M2
f

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         =  cos1
a

M2
2

 

 where α is the angle which any radius of disc subtends at P 

Particular cases:- 

1. If radius of disc becomes infinite, then 
2


  

 So we have 

 






 


2
cos1

a

M2
f

2


 

           = 
2a

M2
 constant [here, it is independent of position of P] 

2. When P is at a very large distance from the disc, then α  0 

Therefore,    0cos1
a

M2
f

2



  

   = 0 

6.6 Potential of a thin spherical shell   

We consider a thin spherical shell of radius „a‟ and surface density „ρ‟ . Let P be a point at a distance „r‟ 

from the center O of the shell. We consider a slice BB´C´C in the form of ring with two planes close to 

each other and perpendicular to OP. 

 

 

 

 

 

 

 

 

Area of ring (slice) BB´C´C is = 2π BD  BB´, 

P 
 

x 
B 

B 

C 
C 

O D r 
  

  d 
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where Radius of ring, BD = a sinθ 

and width of ring,  BB´ = a dθ  

Therefore, Mass of slice (ring) is  

 = 2π a sinθ a dθ ρ 

 = 2π a
2
 ρ sinθ dθ 

Hence, Potential at P due to slice (ring) is  

 dV = 
x

dθsinθρa2π 2

       …(1) 

Now from BOP, we have 

 BP
2
 = OP

2 
+ OB

2
  2OP. OB cosθ 

   x
2
 = r

2 
+ a

2
  2ar cosθ 

On differentiating, we get 

 2x dx = 2ar sin  d 

  dθsinθdx
ar

x
  

Putting in (1), we get dV = 
ar.x

dxxa2 2
 

              = 
r

dxρa2π
    …….. (2) 

Therefore, Potential for the whole spherical shell is obtained by integrating equation (2), we have 

 V = 


dx
r

a2
 

     = 


dx
r

a2
 

Now, we consider the following cases:-  

Case (i) The point P is outside the shell. In this case, the limit of integration extends from x = (r  a) to x 

= (r + a).  
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Hence   V = 




ar

ar

dx
r

ρa2π
 

  V = 
r

ρa4π 2

 

Here, Mass of spherical shall = 4π a
2
 ρ 

 Then V = 
r

M
 

Case (ii) When P is on the spherical shell, then limits are from x = 0 to x = 2a (here r = a). 

Then V = 


a2

0

dx
a

a2
 

 V   = 
a

M

a

a4 2




 

Case (iii) When P is inside the spherical shell, limit are from  x = (a  r) to (a + r). 

So  V = 4πa ρ = 
a

M
 

6.7 Attraction of a spherical shell  

Let us consider a slice BB´C´C at point P, the attraction due to this slice is 

 
2

2

x

dsina2
fd





 along PB 

The resultant attraction directed along PO is given by 

 
2

2

x

dθθsinρa2π
fd 


 cos α 

We know that sinθ dθ = 
ra

dxx
 

In BDP, cos α = 
x

θcosar

PB

PD 
 . 

 d 






 


x

cosθar

ar.x

dxxρa2π
f

2

2
   

We know that 
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x
2
 = a

2
 + r

2
  2ar cosθ 

        x
2
  a

2
 + r

2
 = 2r

2 
 2ar cosθ 

          θcosar
r2

rax 222




 

Then, d
 

x2r

rax

ar.x

dxx ρa2π
f

222

2

2 



 

   = dx
x

rax

r

ρπa
2

222

2 






 
 

   fd


 = dx
x

ar
1

r

ρaπ
2

22

2 






 
  

Hence the attraction for the whole spherical shell is obtained by integration.  

Therefore,  






 



 dx

x

ar
1

r

a
f

2

22

2


 

Now we consider the following cases depending upon the position of P: 

Case (i) When point P is outside the shell, then limits of integration are x = (r  a) to (r + a). 

 


f  = dx
x

ar
1

r

a
ar

ar

2

22

2 










 



    

 


f  =  
ar

ar

22

2 x

1
arx

r

πaρ



















 
  

   = 
22

2

r

M

r

a4



 

Case (ii) When pt. P is on the shell, the limit of integration are x = 0 to 2a. 

So  dx
x

ar
1

r

πaρ
f

2a

0

2

22

2  






 



 

Here integration is not possible (due to second term is becoming indeterminant), because when P is on 

the shell, then 

 r = a    ;      x = 0 
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O r 
  P 

Hence to evaluate the integral, we consider that pt. P is situated not on the surface but very near to the 

surface.  

Let r = a + , where  is very small 

Then attraction is 
 



















 

 


dx
x

aδa
dx

r

ρaπ
f

δ2a

δ

2

22δ2a

δ

2


 

    


f   = 







 



dx
x

2aδ
2a

r

πaρ
δ2a

δ

22
 

   = 


















 


δ2a

δ
2 x

1
2aδ2a

r

πaρ
 

   = 


















 a2

a2

a2
a2

r

a
2

 

     











δ2a

δ
2

r

δaρ2π
f

2

2
 as   0, then r = a 

    = 
2

2

a

a4 
 =  

2a

M
 

Case (iii) When point P is inside the shell, then limits are x = a  r to a + r . 

 dx
x

ar
1

r

πaρ
f

ra

ra

2

22

2 











 



 

    =  
ra

ra

22

2 x

1
arx

r

πaρ




















   =  0 

So, there is no resultant attraction inside the shell. 

6.8 Potential of a Uniform solid sphere  

A uniform solid sphere may be supposed to be made up of a number of thin uniform concentric spherical 

shells. The masses of spherical shells may be supposed to be concentric at centre O. 

Case I: - At an external point  
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a 

 x  P 

O 

 

 

 

Therefore the potential due to all such shells at an external point P is given by  

 V = 
r

m

r

m 21   +……….. 

where m1, m2 , … etc are the masses of shells.  

 V = 
r

M
.........)m(m

r

1
21   

where M is the mass of solid sphere. 

Case II: - The point P is on the sphere.  

In case I, put r = a  

V = 
a

M
,  where  a = radius of sphere  

Case III: - At an internal point. Here point P is considered to be 

external to solid sphere of radius r and internal to the shell of 

internal radius r, external radius = a. 

Let V1 = potential due to solid sphere of radius r 

and V2 = potential due to thick shell ofinternal radius r and external radius a   

Then V1 = 
r

rradiusofsphereofmass
 

      = 
3

4

r

ρrπ

3

4 3

 r
2 
 

To calculate V2 

 We consider a thin concentration shell of radius „x‟ and thickness dx. The potential at P due to 

thin spherical shell under consideration is given by  

 
x

ρdxxπ4 2

 = 4x dx  

Hence for the thick shell of radii r and a, the potential is given by  
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 a 

  x 

P  O 
r 

 V2 = 4 
a

r

dxx  

 V2 = 4 








 

2

ra 22

 = 2 (a
2
  r

2
) 

Therefore, the potential at P due to given solid sphere is 

 V = V1 + V2 = πρ
3

2
 (3a

2
  r

2
) 

Now  M = Mass of given solid sphere = 
3

4
a

3
 

  = 
34a

3M
 

Hence V = 
3

22

3 2a

M
)r(3a

4a

3M
.

3

2
 (3a

2
  r

2
) 

6.9 Attraction for a uniform solid sphere   

Case I: At an external point  

 
2

2

2

1

r

m

r

m
F


………..         

      
2r

M
F 


,     M =  m1 + m2 +……… 

where M = Mass of sphere and m1, m2,…..  

are masses of concentric spherical shells. 

Case II: At a point on the sphere,  

Here we put r = a in above result. 

We get 
2a

M
F 


 

Case III: At a point inside the sphere. 

The point P is external to the solid sphere of radius r and it is internal to thick spherical shell of radii r 

and a.  

And we know that attraction (forces of attraction) at an internal point in case of spherical shell is zero. 

Hence the resultant attraction at P is only due to solid sphere of radius r and is given by  
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   m1 
   

    

    m2  

 

    m3     

2r

rradiusofsphereofmass
F


 

     = 
3

4

r

ρrπ

3

4
2

3

 r 

If M = ρaπ
3

4 3
     = 

3a4

M3
 

Then  
3a

Mr
F


 

6.10 Self attracting systems  

To find the work done by the mutual attractive forces of the particles of a self-attracting system while the 

particles are brought from an infinite distance to the positions, they occupy in the given system. System 

consists of particles of masses m1, m2, ……. at A1, A2,..….. etc. in the given system A.  

We first being m1 from infinity to the position   A1. Then the work 

done in this process is zero, since there is no particle in the system 

to exert attraction on it. Next m2 is brought from infinity to its 

position A2. Then the work done on it by m1 is  =  potential of m1 at 

A2  m2 

  = 
12

21
2

12

1

r

mm
m

r

m
  

where  r12 is the distance between m1 and m2 (r12 = r21). 

Then these two particles m1 and m2 attracts the third particle m3.  

Work done on m3 by m1 and m2 is  

  = 
23

32

13

31

r

mm

r

mm
  

When m4 is brought from infinity to its position A4 , then work done on it by m1 , m2 and m3  is   =   

34

43

24

42

14

41

r

mm

r

mm

r

mm
   

Hence the total work done in collecting all the particles from rest at infinity to their positions in the 

system A is 
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  = 









23

32

13

31

12

21

r

mm

r

mm

r

mm
………… 

  = 
st

ts

r

mm
 ,  where summation extends to every pair of particles. 

Let         V1  = 
13

3

12

2

r

m

r

m
  +……. 

  =  potential at A1 of m2, m3 , ……..  

        V2 = potential at A2 of m1, m3, m4, …….. 

             = 
23

3

21

1

r

m

r

m
  +………. 

         V3 = 
43

4

23

2

13

1

r

m

r

m

m

m
 +………. 

Then   
2

1

r

mm

st

ts [V1 m1 + V2 m2 + V3 m3 +………] 

Total work done = 
2

1
mV 

This represents the work done by mutual attraction of the system of particles. If the system forms a 

continuous body, then work done will be  

  =  dmV
2

1
 

Conversely (if particles are scattered) the work done by the mutual attraction forces of the system as its 

particles are scattered at infinite distance from confinguration A, then work done = 







dmV
2

1
mV

2

1
 

We can find the work done as the body changes from one configuration A to another configuration B. 

The work done in changing of its from A to state at infinity + work done in collecting particles in a state 

at infinity to configuration B 

  =  


A B

'dm'V
2

1
dmV

2

1
 

  A    B 
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Example: A self attracting sphere of uniform density  & radius „a‟ changes to one of uniform density & 

radius „b‟. Show that the work done by its mutual attractive forces is given by  

  









a

1

b

1
M

5

3 2
 

where M is mass of sphere.  

Solution: Here the work done by mutual attractive forces of the system. As the particle which constitute 

the sphere of radius „a‟ are scattered to infinite distance, so  

  W1 = 


dmV
2

1
 

We consider a point within the system at a distance x. The potential at this point within the sphere is 

  V = )x(3aρπ
3

2 22   

Let us now consider at this point, a spherical shell of radius x and thickness dx, then  

  dm = 4  x
2
 dx  

        V dm = ρπ
3

2
(3a

2
  x

2
) 4 x

2
 dx 

           = 
3

8


2


2 
x

2
 (3a

2
  x

2
) dx 

       
a

0

222 xρπ
3

8
dmV (3a

2
  x

2
) dx 

   

a

0

53
222

5

x

3

x
3aρπ

3

8
dmV 








   

  = 
5

a4
ρπ

3

8

5

a
aρπ

3

8 5
22

5
522 








  

  = 
522 aρπ

15

32
 

Now M = Mass of sphere of radius a 
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3

3

a4π

3M
ρ

ρπa
3

4
M





 

 
a

M

5

6
dmV

2

 

Hence  W1 = 





a

M

5

3
dmV

2

1 2

 

Similarly if W2 is work done in bringing the particle at  to the second configuration (a sphere of radius 

b) 

Then W2 =  
b

M

5

3
dm'V'

2

1 2

 

Total work done is given by  

 W = W1 + W2 = 









a

1

b

1
M

5

3 2
 

6.11 Laplace’s equation for potential  

Let V be the potential of the system of attracting particles at a point P (x, y, z) not in contact with the 

particles so that  

V = 
r

m
      …(1)                     P 

where m is the mass of particle at P0 (a,b,c) , 

r = distance of P from the P0,                                                                   

and r
2
 = (x  a)

2
 + (y  b)

2
 + (z  c)

2
      …(2)  

Then (1)  











222 r

a)(x

r

m

x

r

r

m

x

V
 

              






 












r

ax

x

r
)ax(2

x

r
r2)2(  

and 






3r

)by(m

y

V
 

 

       P0 
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(a,b,c) 

R 

 






3r

)cz(m

z

V
 

 
xx

V
2

2









[  m (x  a) r

3
] 

          =  m(x  a) (3 r
4

) 
x

r




 m r

3
 (1)  

          = m
5

2

r

)ax(
3


 3r

m
 

and  
2

2

y

V




 = 3  


35

2

r

m

r

)by(m
 

  






35

2

2

2

r

m

r

)cz(m
3

z

V
 

 0
z

V

y

V

x

V
2

2

2

2

2

2















 

which is Laplace equation.  

 V  potential  

 dV = small volume elemnt  

       dm =  dV 

So V =  r

dVρ
  

  









 






x

r

r

1

x

V
2

  dV 

6.12 Poisson’s equation for potential  

Let the point P (x, y, z) be in contact (inside) the attracting matter. 

We describe a sphere of small radius R and centre (a, b, c) contains 

the point P.  

  = density of material (sphere)  
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Since the sphere we describe is very small, therefore we consider the matter inside this sphere is of 

uniform density . 

So potential at P may be due to  

(i) the matter inside the sphere  

(ii) the matter outside the sphere.  

V1 = contribution towards potential at P by the matter outside the sphere 

V2 = contribution towards potential at P by the matter inside the sphere.  

Since the point P is not in contact with the matter outside the sphere. Therefore by Laplace equation, 


2
V1 = 0. 

Here V2 = potential at P (x, y, z) inside the sphere of radius R.  

 V2 = πρ
3

2
 (3R

2
  r

2
) 

where r
2
 = (x  a)

2
 + (y  b)

2
 + (z  c)

2
 

        
r

a)(xr
2)(πρ

3

2

x

r
2rπρ

3

2

x

V2 


















 

                = 
3

4
  (x  a) 

 
3

4

x

V
2
2

2 





  

Similarly,  πρ
3

4

z

V
,πρ

3

4

y

V
2

2

2

2
2 










 

 
2
2

2

2
2

2

2
2

2

z

V

y

V

x

V














 =   4 

 
2
 V2  =  4 

Since total potential V = V1 + V2 

 
2
V = 

2
V1 + 

2
V2 

 4πV
z

V

y

V

x

V 2

2

2

2

2

2

2















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This equation is known as Poisson‟s equation.  

6.13 Equipotential Surfaces  

The potential V of a given attracting system is a function of coordinates x, y, z. The equation  

 V(x, y, z) = constant  

represents a surface over which the potential is constant. Such surfaces are known equipotential surfaces.  

Condition that a family of given surfaces is a possible family of equipotential surfaces in a free space.  

To find the condition that the equation  

 f(x, y, z) = constant 

may represent the family of equipotential surface.  

If the potential V is constant whenever f(x, y, z) is constant, then there must be a functional relation 

between V and f(x, y, z) say, 

 V = {f(x, y, z)} 

 i.e. V = (f) 

    
x

V




= (f) 

x

f




 

    
2

2

x

V




 = (f) 

2

x

f












 + (f)

2

2

x

f




 

 and  



2

2

y

V
(f) 












2

y

f
(f) 

2

2

y

f




 

 and  



2

2

z

V
 (f) 












2

z

f
 (f) 

2

2

z

f




 

Adding  

 
2
V = (f) 
























2

2

2

2

2

2

z

f

y

f

x

f
 + (f) 



















































222

y

f

y

f

x

f
 

But in free space, 
2
V = 0 
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 
)('

)(''

z

f

y

f

x

f

z

f

y

f

x

f

222

2

2

2

2

2

2

f

f



























































 = a function of f  

       = (f) (say)     …(1) 

This is the necessary condition and when it is satisfied, the potential V can be expressed in terms of f(x, 

y, z).  

Then V = (f), where  
)(

)(

f

f








 + (f) = 0 

Integrating, log (f) = log A  ψ (f) df 

 log 






 




A

f )(
(f) df 

 (f) = A e
(f) df 

Again integrating, 

 V = (f) =  A  
 dfψ(f)e df + B     …(2) 

which is required expression in terms of f(x, y, z) for V.  

Example: - Show that a family of right circular cones with a common axis and vertex is a possible 

family of equipotential surfaces. Hence find the potential function. 

Solution: Taking axis of z for common axis. The equation of family of cones is  

 f(x, y, z) = 
2

22

z

yx 
 = constant     …(1) 

To show: 
)(

)(

z

f

y

f

x

f

z

f

y

f

x

f

222
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2

2

f

f































































 = a function of f        …(*) 

Now   

)(z2)()y(x
z

f
,

z

2y

y

f
,

z

2x

x

f 322

22















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z
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y

f
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z

2

x

f 422
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2
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2
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2













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Therefore, we have  
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


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


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
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6
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4
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z
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
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     = 
222222

6

4
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)y(x4)y(x4z

z

z
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


 

   =  
])y(x4)y(x[4z
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222222
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
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














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


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


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2
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4

z

yx

z
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z
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22z
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f

f


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    = 
1)(f2f

3f2

)f(f2

3f2
2 







 = function of f 

 
f)(12f

3f2

)(

)(










f

f




   [Function of f, so condition (*) is satisfied] 

 0
f)(12f

3f2

)(

)(











f

f




 

 0
f)2(1

1

f

1

)(
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








f

f


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Integrating, we get 
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P2 

P1 

 

 log (f) + log f + 
2

1
 log (1 + f) = log C 

 log (f) = log 
f1f

C


 

 (f) = 
f1f

C


 

 
f1f

C

f 


d

d
 

 d  = 
 f1f

C
df + C 

Put  f = tan
2
 

 df = 2 tan sec
2
 d 

   = C 
 θtan1θtan

dθθsectanθ2
22

2

 + C 

         = C   'Cθd
θsec

θsec
.

θtan

2 2

 

     = 2C  θd
θtan

θsec
 + C 

     = 2C  θcosec  d + C 

 V = (f) = 2C log (cosec   cot ) + C 

or V = (f) = 2C log 








2

θ
tan  + C is the required potential function. So V is constant when  is 

constant.  

6.14 Variation in attraction in crossing a surface on which   

  there exist a thin layer of attracting matter  

Let P1 and P2 be two points on the opposite side of surface. 

 is the surface density of small circular disc of the surface 

between P1 and P2. For potential at surface, V1 = V2 
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A 

a  30 
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 60 
30   

P 

 

and 
n

V

n

V 12









 =  4 

To find the attraction of matter, when the potential is given at all points of space, then Poisson‟s equation  

 
2
V =  4 

gives the volume density of matter.  

  = 
π4

1
 

2
V 

If potential is given by different functions V1, V2 on opposite side of a surface S, then surface density  

is given by  

  = 

















n

V

n

V

π4

1 12  

Example: The potential outside a certain cylindrical boundary is zero, inside it is  

 V = x
3
  3xy

2
  9x

2
 + 3ay

2
. Find the distribution of matter. 

Solution: Since V2 = outside potential and V1 = Inside potential  

Here V2 = 0 

We find the boundary.  

Since the potential is continuous across the boundary and zero outside the boundary. The boundary may 

be given by  

 x
3
  3xy

2
  ax

2
 + 3ay

2
 = 0 

or        (x  a) (x
2
  3y

2
) = 0 

 (x  a) (x + 3 y) (x  3 y) = 0 

AB is equation of line x = a 

OB is equation of line x + 3 y = 0 

OA is equation of line x  3 y = 0 

The section is an equilateral OAB of height „a‟. 
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x

V1




= 3x

2
  3y

2
  2ax 

 
y

V1




 =  6xy + 6ay 

 
2
1

2

x

V




 =  6x  2a 

 
2
1

2

y

V




 =  6x + 6a 

 
2
1

2

z

V




 = 0 

So that inside the region,  

  = 
π4

1
 

2
V1  = 

π4

1
 [4a]      

     = 
π

a
  

and outside,  = 0 since V2 = 0 

At P on AB (x = a), 

  = 
ax

12

x

V

x

V

4π

1



















 

    = 
π4

1
 [ 0  3x

2
 + 3y

2
 + 2ax] x = a 
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   = 









 2
2

22 y
3

a

π4

3
]ay3[

π4

1
     …(1) 

In OAM, OA
2
 = OM

2
 + AM

2
 

 OA
2
 = a

2
 + 

4

1
(OA)

2
 

 
2)OA(

4

3
 = a

2
          (OA)

2
 = 

2a
3

4
 

 (2 MA)
2
 = 

3

4
a

2
    (MA)

2
 = 

3

1
a

2
     …(2) 

 From (1) and (2), we have  

  = 
π4

3
[MA

2
  MP

2
] 

     = 
π4

3
(MA + MP) (MA  MP) 

     = 
π4

3
(PB) (AP) 

At P on OA (x = 3 y),  

  = 












n

V

π4

1 1  

    = 

y3x
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V
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x

V
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
















  

    = 

y3x
y
1

V

2

3

x
1

V

2

1

4π

1






















 

    = 
y3x

22 ay33xy33axy
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

3

x
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1 2
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  = 
π

1
x (a  x). 
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6.15 Harmonic functions 

Any solution of Laplace‟s equation 
2
 V = 0 in x, y, z is called Harmonic function or spherical 

harmonic, where Laplace‟s equation is given by 

 0
z

V

y

V

x

V
V

2

2

2

2

2

2
2 














  

Note: If V is a Harmonic function of degree n, then  

 V
zyx t

t

q

q

p

p












 is a harmonic function of degree n  p  q  t.  

For if we differentiate the equation 
2
V = 0 , p times w.r.t. x , q times w.r.t. y and t times w.r.t. z, we get 


2
 




















V

zyx t

t

q

q

p

q

 = 0 

6.16 Surface and solid Harmonics  

In spherical polar coordinates (r, , ) , Laplace‟s equation is  

 0
V

θsin

1

θ

V
sinθ

θsinθ

1

r

V
r

r 2

2

2

2 





































   …(1) 

Let V = r
n
 Sn , where Sn is independent of r or Sn(, ). 

 
































)Sr(

r
r

rr

V
r

r
n

n22
 

         = 
r


[r

2
 Sn n r

n1
] 

         = 
r


[Sn n r

n+1
] = nSn 

r


(r

n+1
) 

            = n (n + 1) r
n
 Sn 

(1)  n (n + 1) r
n
 Sn + 

2

2

2sin

1
sin

sin

1



















 nnnn S
r

θθ

S
rθ.

θθ
 = 0 

 n (n + 1) r
n
 Sn + 0

S

θsin

r

θ

S
sinθ

θsinθ

r
2

n
2

2

n
n

n





















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 n (n +1) Sn + 0
S

θsin

1

θ

S
sinθ

θsinθ

1
2

n
2

2

n 





















 

 n (n +1) Sn + cot  0
S

θsin

1

θ

S

θ

S
2

n
2

22

n
2

n 















   …(2) 

If cos  = , then we obtain 

 N (n +1) Sn + 0
S

μ1

1

μ

S
)μ(1

μ 2

n
2

2

n2 

























   …(3) 

A solution Sn of equation (2) is called a Laplace function or a surface harmonic of order n. Since n (n + 

1) remains unchanged when we write (n +1) for n, so there are two solutions of (1) of which Sn is a 

factor, namely, r
n
 Sn and r

n1
 Sn. 

These are known as solid Harmonic of degree n & (n +1) respectively.  

Remarks:  

1. If U is a Harmonic function of degree n, then 
1n2r

U


 is also Harmonic function. 

Let  U = r
n
 Sn  

so that n1n
n

1n2
n

n

1n2
S

r

S

r

Sr

r

U



 r
(n+1)

 

which is Harmonic.  

Let xyz  3
rd

 degree is a solution of Laplace equation, then 
7r

xyz
 is also Harmonic. 

2.  If U is a Harmonic function of degree (n +1), then Ur
2n+1

 is also a Harmonic function. We may write  

 U = r
n1

 Sn 

so that r
2n+1

 U = r
2n+1

 r
n1

 Sn = r
n
 Sn  

which is Harmonic. 

 

6.17 Surface density in terms of surface Harmonics   

The potential at any point P due to a number of particles situated on the surface of sphere of radius „a‟ 

can be put in the form  
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 V1 = 





0n
1n

n

a

r
 Un    ,   when r < a     …(1) 

and V2 =  1n

n

r

a
 Un    ,   when r > a     …(2) 

where Un denotes the sum of a number of surface Harmonics (for each particle) and therefore itself a 

surface harmonic. We assume (1) and (2) to represent potential of a certain distribution of mass and want 

to find it (density) on the surface.  

Here Un is Harmonic,  

 
2
V1 = 0  ,  

2
V2 = 0 

Here on the surface of sphere, density is given by  

  4 = 
ar

12

r

V

r

V



















 

  = 
ar

21

r

V

r

V

π4

1



















 

    = 

ar

2n

n
n

1n

1n
n

r

)1n(aU

a

rnU

π4

1














 
   

    = 






 
  



2n

n
n

1n

1n
n

a

)1n(aU

a

anU

π4

1
 

    = 






 
  2n2n

a

)1n(
U

a

n
U

π4

1
 

          = 


2
n

aπ4

U)1n2(
       …(3)     

If potential is given by (1) and (2), then surface density is given by (3).  

6.18 Check Your Progress 

1. What is the potential at any point on the axis of a uniform circular disc of radius „a‟ and mass M? 

2. Write the attraction at any point inside a uniform solid sphere of radius „a‟ and mass M. 

3. Define equipotential surfaces. 
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4. Write Poisson‟s equation for an attracting matter.  

6.19 Summary 

In this chapter we have discussed about the attraction and potential of rod, disc, spherical shells and 

sphere.  Further we have studied about Laplace and Poisson equations, equipotential surfaces, 

Surface and solid harmonics. 

6.20 Keywords 

Attraction and potential, Laplace and Poisson equations, equipotential surfaces, Surface harmonics, 

solid harmonics 

6.21 Self-Assessment Test 

1. Discuss the attraction of a thin spherical shell of radius „a‟ and surface density „  ‟. 

2. Show that a family of right circular cones with a common axis and vertex is a possible family of 

equipotential surfaces and find the potential function. 

6.22 Answers to check your progress 

1. The potential is given by V =  rra
a

2M 22

2
  

2. The attraction is given by 
3a

Mr
F


 

3. The surfaces over which the potential is constant are known equipotential surfaces. 

4. Poisson‟s equation for an attracting matter is 4πV
z

V

y

V

x

V 2

2

2

2

2

2

2















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